These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8923986)

  • 1. Interactions between adjacent fibers in a cardiac muscle bundle.
    Wang S; Leon LJ; Roberge FA
    Ann Biomed Eng; 1996; 24(6):662-74. PubMed ID: 8923986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model.
    Roberge FA; Wang S; Hogues H; Leon LJ
    Ann Biomed Eng; 1996; 24(6):647-61. PubMed ID: 8923985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of propagation along a cylindrical bundle of cardiac tissue--I: Mathematical formulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):850-60. PubMed ID: 2227972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological interaction through the interstitial space between adjacent unmyelinated parallel fibers.
    Barr RC; Plonsey R
    Biophys J; 1992 May; 61(5):1164-75. PubMed ID: 1600078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and current distributions in a cylindrical bundle of cardiac tissue.
    Henriquez CS; Trayanova N; Plonsey R
    Biophys J; 1988 Jun; 53(6):907-18. PubMed ID: 3395660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):861-75. PubMed ID: 2227973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of propagation in a bundle of skeletal muscle fibers: modulation effects of passive fibers.
    Henneberg KA; Roberge FA
    Ann Biomed Eng; 1997; 25(1):29-45. PubMed ID: 9124736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous and discontinuous propagation in heart muscle.
    de Bakker JM; van Rijen HM
    J Cardiovasc Electrophysiol; 2006 May; 17(5):567-73. PubMed ID: 16684038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic variations in interstitial and intracellular structure modulate the distribution of conduction delays and block in cardiac tissue with source-load mismatch.
    Hubbard ML; Henriquez CS
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v3-v9. PubMed ID: 23104912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.
    Roth BJ
    Ann Biomed Eng; 1988; 16(6):609-37. PubMed ID: 3228221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction in bundles of demyelinated nerve fibers: computer simulation.
    Reutskiy S; Rossoni E; Tirozzi B
    Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary effects influence velocity of transverse propagation of simulated cardiac action potentials.
    Sperelakis N; Kalloor B; Ramasamy L
    Theor Biol Med Model; 2005 Sep; 2():36. PubMed ID: 16144554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model.
    Henriquez CS; Muzikant AL; Smoak CK
    J Cardiovasc Electrophysiol; 1996 May; 7(5):424-44. PubMed ID: 8722588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.