These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 8924585)
1. Identification of catechol and hydroquinone metabolites of 4-monochlorobiphenyl. McLean MR; Bauer U; Amaro AR; Robertson LW Chem Res Toxicol; 1996; 9(1):158-64. PubMed ID: 8924585 [TBL] [Abstract][Full Text] [Related]
2. Detection of PCB adducts by the 32P-postlabeling technique. McLean MR; Robertson LW; Gupta RC Chem Res Toxicol; 1996; 9(1):165-71. PubMed ID: 8924587 [TBL] [Abstract][Full Text] [Related]
3. In vitro metabolism of [14C]4-chlorobiphenyl and [14C]2,2',5,5'-tetrachlorobiphenyl by hepatic microsomes from rats and pigeons. Evidence against an obligatory arene oxide in aromatic hydroxylation reactions. Borlakoglu JT; Haegele KD; Reich HJ; Dils RR; Wilkins JP Int J Biochem; 1991; 23(12):1427-37. PubMed ID: 1761152 [TBL] [Abstract][Full Text] [Related]
4. From PCBs to highly toxic metabolites by the biphenyl pathway. Cámara B; Herrera C; González M; Couve E; Hofer B; Seeger M Environ Microbiol; 2004 Aug; 6(8):842-50. PubMed ID: 15250886 [TBL] [Abstract][Full Text] [Related]
5. Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Amaro AR; Oakley GG; Bauer U; Spielmann HP; Robertson LW Chem Res Toxicol; 1996; 9(3):623-9. PubMed ID: 8728508 [TBL] [Abstract][Full Text] [Related]
6. Biphenyl hydroxylations and spectrally apparent interactions with liver microsomes from hamsters pre-treated with phenobarbitone and 3-methylcholanthrene. Burke MD; Bridges JW Xenobiotica; 1975 Jun; 5(6):357-76. PubMed ID: 238342 [TBL] [Abstract][Full Text] [Related]
7. The effect of 3-methylcholanthrene, Aroclor 1254, and phenobarbital induction on the metabolism of biphenyl by rat and mouse 9000g supernatant liver fractions. Halpaap-Wood K; Horning EC; Horning MG Drug Metab Dispos; 1981; 9(2):103-7. PubMed ID: 6113106 [TBL] [Abstract][Full Text] [Related]
8. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
9. In vitro biotransformation of 3,4-dihydro-6-hydroxy-2,2-dimethyl-7-methoxy-1(2H)-benzopyran (CR-6), a potent lipid peroxidation inhibitor and nitric oxide scavenger, in rat liver microsomes. Yenes S; Commandeur JN; Vermeulen NP; Messeguer A Chem Res Toxicol; 2004 Jul; 17(7):904-13. PubMed ID: 15257615 [TBL] [Abstract][Full Text] [Related]
10. [Comparative studies in vivo and in vitro on the formation of phenolic biphenyl metabolites in various animal species (author's transl)[]. Raig P; Beschorner J; Ammon R Arzneimittelforschung; 1976; 26(12):2178-82. PubMed ID: 1037268 [TBL] [Abstract][Full Text] [Related]
11. In vitro metabolism of chlorotriazines: characterization of simazine, atrazine, and propazine metabolism using liver microsomes from rats treated with various cytochrome P450 inducers. Hanioka N; Jinno H; Tanaka-Kagawa T; Nishimura T; Ando M Toxicol Appl Pharmacol; 1999 May; 156(3):195-205. PubMed ID: 10222312 [TBL] [Abstract][Full Text] [Related]
14. 2,2',5,5'-Tetrachlorobiphenyl: isolation and identification of metabolites generated by rat liver microsomes. Preston BD; Allen JR Drug Metab Dispos; 1980; 8(4):197-204. PubMed ID: 6105050 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of the polynuclear sulfur heterocycle benzo[b]phenanthro[2,3-d]thiophene by rodent liver microsomes: evidence for multiple pathways in the bioactivation of benzo[b]phenanthro[2,3-d]thiophene. Yuan ZX; Sikka HC; Munir S; Kumar A; Muruganandam AV; Kumar S Chem Res Toxicol; 2003 Dec; 16(12):1581-8. PubMed ID: 14680372 [TBL] [Abstract][Full Text] [Related]
16. The major metabolite of equilin, 4-hydroxyequilin, autoxidizes to an o-quinone which isomerizes to the potent cytotoxin 4-hydroxyequilenin-o-quinone. Zhang F; Chen Y; Pisha E; Shen L; Xiong Y; van Breemen RB; Bolton JL Chem Res Toxicol; 1999 Feb; 12(2):204-13. PubMed ID: 10027800 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Sawahata T; Neal RA Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203 [TBL] [Abstract][Full Text] [Related]
18. The effect of phenobarbital and beta-naphthoflavone induction on the metabolism of biphenyl in the rat and mouse. Halpaap-Wood K; Horning EC; Horning MG Drug Metab Dispos; 1981; 9(2):97-102. PubMed ID: 6113125 [TBL] [Abstract][Full Text] [Related]
19. Stereoselectivity of rat liver microsomal enzymes in the metabolism of 7-fluorobenz(a)anthracene and mutagenicity of metabolites. Chiu PL; Fu PP; Yang SK Cancer Res; 1984 Feb; 44(2):562-70. PubMed ID: 6692361 [TBL] [Abstract][Full Text] [Related]
20. Microsomal biphenyl hydroxylation: the formation of 3- hydroxybiphenyl and biphenyl catechol. Billings RE; McMahon RE Mol Pharmacol; 1978 Jan; 14(1):145-54. PubMed ID: 625282 [No Abstract] [Full Text] [Related] [Next] [New Search]