These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 8924596)

  • 1. Nitration and hydroxylation of phenolic compounds by peroxynitrite.
    Ramezanian MS; Padmaja S; Koppenol WH
    Chem Res Toxicol; 1996; 9(1):232-40. PubMed ID: 8924596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite.
    Lemercier JN; Padmaja S; Cueto R; Squadrito GL; Uppu RM; Pryor WA
    Arch Biochem Biophys; 1997 Sep; 345(1):160-70. PubMed ID: 9281324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxynitrite-dependent tryptophan nitration.
    Alvarez B; Rubbo H; Kirk M; Barnes S; Freeman BA; Radi R
    Chem Res Toxicol; 1996 Mar; 9(2):390-6. PubMed ID: 8839040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrosation by peroxynitrite: use of phenol as a probe.
    Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA
    Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.
    Ferrer-Sueta G; Ruiz-Ramírez L; Radi R
    Chem Res Toxicol; 1997 Dec; 10(12):1338-44. PubMed ID: 9437523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo.
    Crow JP
    Arch Biochem Biophys; 1999 Nov; 371(1):41-52. PubMed ID: 10525288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations.
    Denicola A; Freeman BA; Trujillo M; Radi R
    Arch Biochem Biophys; 1996 Sep; 333(1):49-58. PubMed ID: 8806753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metmyoglobin and methemoglobin catalyze the isomerization of peroxynitrite to nitrate.
    Herold S; Shivashankar K
    Biochemistry; 2003 Dec; 42(47):14036-46. PubMed ID: 14636072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of nitrous acid-dependent tyrosine nitration and DNA base deamination by flavonoids and other phenolic compounds.
    Oldreive C; Zhao K; Paganga G; Halliwell B; Rice-Evans C
    Chem Res Toxicol; 1998 Dec; 11(12):1574-9. PubMed ID: 9860503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin.
    Shimanovich R; Groves JT
    Arch Biochem Biophys; 2001 Mar; 387(2):307-17. PubMed ID: 11370855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite.
    Beckman JS; Ischiropoulos H; Zhu L; van der Woerd M; Smith C; Chen J; Harrison J; Martin JC; Tsai M
    Arch Biochem Biophys; 1992 Nov; 298(2):438-45. PubMed ID: 1416975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceleration of peroxynitrite oxidations by carbon dioxide.
    Uppu RM; Squadrito GL; Pryor WA
    Arch Biochem Biophys; 1996 Mar; 327(2):335-43. PubMed ID: 8619624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic studies of the isomerization of peroxynitrite to nitrate catalyzed by distal histidine metmyoglobin mutants.
    Herold S; Kalinga S; Matsui T; Watanabe Y
    J Am Chem Soc; 2004 Jun; 126(22):6945-55. PubMed ID: 15174864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monomeric MnIII/II and FeIII/II complexes with terminal hydroxo and oxo ligands: probing reactivity via O-H bond dissociation energies.
    Gupta R; Borovik AS
    J Am Chem Soc; 2003 Oct; 125(43):13234-42. PubMed ID: 14570499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitration of tyrosine by hydrogen peroxide and nitrite.
    Oury TD; Tatro L; Ghio AJ; Piantadosi CA
    Free Radic Res; 1995 Dec; 23(6):537-47. PubMed ID: 8574348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological reactions of peroxynitrite: evidence for an alternative pathway of salicylate hydroxylation.
    Narayan M; Berliner LJ; Merola AJ; Diaz PT; Clanton TL
    Free Radic Res; 1997 Jul; 27(1):63-72. PubMed ID: 9269581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reevaluation of the peroxynitrite scavenging activity of some dietary phenolics.
    Ketsawatsakul U; Whiteman M; Halliwell B
    Biochem Biophys Res Commun; 2000 Dec; 279(2):692-9. PubMed ID: 11118347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective nitration of Tyr99 in calmodulin as a marker of cellular conditions of oxidative stress.
    Smallwood HS; Galeva NA; Bartlett RK; Urbauer RJ; Williams TD; Urbauer JL; Squier TC
    Chem Res Toxicol; 2003 Jan; 16(1):95-102. PubMed ID: 12693036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.