These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8924860)

  • 1. [Decrease in brain temperature during paradoxical sleep enables entry into torpor and hibernation].
    Pastukhov IuF; Chepkasov IE
    Dokl Akad Nauk; 1996 May; 348(2):272-4. PubMed ID: 8924860
    [No Abstract]   [Full Text] [Related]  

  • 2. [The temporal characteristics of "winter" paradoxical sleep in the hibernating suslik Citellus major].
    Pastukhov IuF; Afanas'ev SV; Fedorova NV; Chepkasov IE
    Zh Evol Biokhim Fiziol; 1995; 31(3):299-306. PubMed ID: 7483921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical sleep considerably contributes to the night decrease in brain temperature in hibernating mammals in summer.
    Pastukhov YuF ; Fedorova NV; Nozdrachev AD
    Dokl Biol Sci; 2000; 373():342-4. PubMed ID: 11013825
    [No Abstract]   [Full Text] [Related]  

  • 4. [Paradoxical sleep and the brain temperature: seasonal interactions of euthermia ("normothermia") and hypometabolism in hibernating susliks Citellus major].
    Pastukhov IuF
    Zh Evol Biokhim Fiziol; 1999; 35(3):237-43. PubMed ID: 10519211
    [No Abstract]   [Full Text] [Related]  

  • 5. [The recovery of the sleep-wakefulness cycle during arousal from hibernation in the long-tailed Arctic suslik Citellus parryi].
    Belich AI; Chepkasov IE
    Zh Evol Biokhim Fiziol; 1993; 29(2):167-76. PubMed ID: 8317181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in the wakefulness-sleep cycle in mice induced by endogenous substances from the tissues of the susliks Citellus parryi and C. undulatus during hibernation].
    Pastukhov IuF; Chepkasov IE
    Zh Evol Biokhim Fiziol; 1984; 20(3):327-30. PubMed ID: 6741351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of energy availability in Mammalian hibernation: an experimental test in free-ranging eastern chipmunks.
    Humphries MM; Kramer DL; Thomas DW
    Physiol Biochem Zool; 2003; 76(2):180-6. PubMed ID: 12794671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entry into hibernation in M. flaviventris: sleep and behavioral thermoregulation.
    Miller VM; South FE
    Physiol Behav; 1981 Dec; 27(6):989-93. PubMed ID: 7335818
    [No Abstract]   [Full Text] [Related]  

  • 9. Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels.
    Frank CL; Karpovich S; Barnes BM
    Physiol Biochem Zool; 2008; 81(4):486-95. PubMed ID: 18513150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of the brain bioelectrical activity of the suslik Citellus parryi during hibernation].
    Belich AI
    Zh Evol Biokhim Fiziol; 1984; 20(1):107-10. PubMed ID: 6702350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioural impacts of torpor expression: a transient effect in captive eastern chipmunks (Tamias striatus).
    Thompson AB; Montiglio PO; Humphries MM
    Physiol Behav; 2013 Feb; 110-111():115-21. PubMed ID: 23313403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock?
    Malan A
    J Biol Rhythms; 2010 Jun; 25(3):166-75. PubMed ID: 20484688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow wave sleep, shallow torpor and hibernation: homologous states of diminished metabolism and body temperature.
    Berger RJ
    Biol Psychol; 1984 Dec; 19(3-4):305-26. PubMed ID: 6395910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood cell dynamics during hibernation in the European Ground Squirrel.
    Bouma HR; Strijkstra AM; Boerema AS; Deelman LE; Epema AH; Hut RA; Kroese FG; Henning RH
    Vet Immunol Immunopathol; 2010 Aug; 136(3-4):319-23. PubMed ID: 20399508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brain 5-HT1A receptor gene expression in hibernation.
    Naumenko VS; Tkachev SE; Kulikov AV; Semenova TP; Amerhanov ZG; Smirnova NP; Popova NK
    Genes Brain Behav; 2008 Apr; 7(3):300-5. PubMed ID: 17711450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses to preoptic heating and cooling in a hibernator Citellus tridecemlineatus.
    Williams BA; Heath JE
    Am J Physiol; 1970 Jun; 218(6):1654-60. PubMed ID: 5446295
    [No Abstract]   [Full Text] [Related]  

  • 17. [Changes in thermoregulation, sleep and the thyroid hormone concentration of the blood in the "critical" period of the entry into hibernation of the suslik Citellus parryi].
    Pastukhov IuF; Nevretdinova ZG
    Zh Evol Biokhim Fiziol; 1991; 27(2):211-7. PubMed ID: 1927154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of serotonin on body rewarming during awakening from hibernation].
    Popova NK; Kudriavtseva NN
    Patol Fiziol Eksp Ter; 1975; (6):72-4. PubMed ID: 1084974
    [No Abstract]   [Full Text] [Related]  

  • 19. [Role of neuropeptides in inducing a state of hibernation].
    Kramarova LI; Kolaeva SG; Pastukhov IuF; Rozhanets VV; Iukhananov RIu
    Zh Obshch Biol; 1984; 45(3):400-9. PubMed ID: 6147945
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of serotonin on the awakening from winter hibernation].
    Popova NK
    Fiziol Zh SSSR Im I M Sechenova; 1975 Jan; 61(1):153-6. PubMed ID: 1078565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.