These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8925286)

  • 1. Effects of suicide transport lesions of the striatopallidal or striatonigral pathways on striatal ultrastructure.
    Roberts RC; Strain-Saloum C; Wiley RG
    Brain Res; 1995 Dec; 701(1-2):227-37. PubMed ID: 8925286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of suicide transport lesions of the striatonigral or striatopallidal pathways on subsets of striatal neurons.
    Roberts RC; Harrison MB; Francis SM; Wiley RG
    Exp Neurol; 1993 Dec; 124(2):242-52. PubMed ID: 7507060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal lesioning with axonally transported toxins.
    Wiley RG; Kline IV RH
    J Neurosci Methods; 2000 Nov; 103(1):73-82. PubMed ID: 11074097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in D2 but not D1 receptor binding in the striatum following a selective lesion of striatopallidal neurons.
    Harrison MB; Wiley RG; Wooten GF
    Brain Res; 1992 Sep; 590(1-2):305-10. PubMed ID: 1422839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of m1 and m4 muscarinic receptor mRNA in the striatum following a selective lesion of striatonigral neurons.
    Harrison MB; Tissot M; Wiley RG
    Brain Res; 1996 Sep; 734(1-2):323-6. PubMed ID: 8896841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential localization of A2a adenosine receptor mRNA with D1 and D2 dopamine receptor mRNA in striatal output pathways following a selective lesion of striatonigral neurons.
    Pollack AE; Harrison MB; Wooten GF; Fink JS
    Brain Res; 1993 Dec; 631(1):161-6. PubMed ID: 8298989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destruction of midbrain dopaminergic neurons by using immunotoxin to dopamine transporter.
    Wiley RG; Harrison MB; Levey AI; Lappi DA
    Cell Mol Neurobiol; 2003 Oct; 23(4-5):839-50. PubMed ID: 14514035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning.
    Wiley RG
    Trends Neurosci; 1992 Aug; 15(8):285-90. PubMed ID: 1384197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The time course of changes in D1 and D2 receptor binding in the striatum following a selective lesion of striatonigral neurons.
    Harrison MB; Wiley RG; Wooten GF
    Brain Res; 1992 Nov; 596(1-2):330-6. PubMed ID: 1334779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destruction of a sub-population of cortical neurones by suicide transport of volkensin, a lectin from Adenia volkensii.
    Pangalos MN; Francis PT; Pearson RC; Middlemiss DN; Bowen DM
    J Neurosci Methods; 1991 Nov; 40(1):17-29. PubMed ID: 1795550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of striatal excitatory amino acid binding site subtypes to striatonigral projection neurons.
    Tallaksen-Greene SJ; Wiley RG; Albin RL
    Brain Res; 1992 Oct; 594(1):165-70. PubMed ID: 1334764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronotoxic effects of monoclonal anti-Thy 1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat.
    Wiley RG; Stirpe F; Thorpe P; Oeltmann TN
    Brain Res; 1989 Dec; 505(1):44-54. PubMed ID: 2575436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeccin and volkensin but not abrin are effective suicide transport agents in rat CNS.
    Wiley RG; Stirpe F
    Brain Res; 1988 Jan; 438(1-2):145-54. PubMed ID: 2449931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase.
    Hervé D; Lévi-Strauss M; Marey-Semper I; Verney C; Tassin JP; Glowinski J; Girault JA
    J Neurosci; 1993 May; 13(5):2237-48. PubMed ID: 8478697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease.
    Wiley RG; Berbos TG; Deckwerth TL; Johnson EM; Lappi DA
    J Neurol Sci; 1995 Feb; 128(2):157-66. PubMed ID: 7738592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome oxidase activity in the monkey globus pallidus and subthalamic nucleus after ablation of striatal interneurons expressing substance P receptors.
    Chiken S; Hatanaka N; Tokuno H
    Neurosci Lett; 2003 Dec; 353(2):103-6. PubMed ID: 14664911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cortical nicotinic acetylcholine receptor numbers following unilateral destruction of pyramidal neurones by intrastriatal volkensin injection.
    Chessell IP; Francis PT; Bowen DM
    Neurodegeneration; 1995 Dec; 4(4):415-24. PubMed ID: 8846235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective localization of striatal D1 receptors to striatonigral neurons.
    Harrison MB; Wiley RG; Wooten GF
    Brain Res; 1990 Oct; 528(2):317-22. PubMed ID: 2148707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracer-toxins: cholera toxin B-saporin as a model.
    Llewellyn-Smith IJ; Martin CL; Arnolda LF; Minson JB
    J Neurosci Methods; 2000 Nov; 103(1):83-90. PubMed ID: 11074098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronotoxicity of axonally transported toxic lectins, abrin, modeccin and volkensin in rat peripheral nervous system.
    Wiley RG; Stirpe F
    Neuropathol Appl Neurobiol; 1987; 13(1):39-53. PubMed ID: 2437487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.