These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8925926)

  • 1. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for alternative forms of the activator domain, P5abc, in the Tetrahymena ribozyme.
    Naito Y; Shiraishi H; Inoue T
    FEBS Lett; 2000 Jan; 466(2-3):273-8. PubMed ID: 10682842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P5abc of the Tetrahymena ribozyme consists of three functionally independent elements.
    Naito Y; Shiraishi H; Inoue T
    RNA; 1998 Jul; 4(7):837-46. PubMed ID: 9671056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of novel forms of a functional domain within the Tetrahymena ribozyme.
    Williams KP; Imahori H; Fujimoto DN; Inoue T
    Nucleic Acids Res; 1994 Jun; 22(11):2003-9. PubMed ID: 8029006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
    Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2014 Apr; 117(4):407-12. PubMed ID: 24216461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
    Ikawa Y; Yoshioka W; Ohki Y; Shiraishi H; Inoue T
    Genes Cells; 2001 May; 6(5):411-20. PubMed ID: 11380619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a GNRA tetraloop in P5abc can disrupt an interdomain interaction in the Tetrahymena group I ribozyme.
    Zheng M; Wu M; Tinoco I
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3695-700. PubMed ID: 11274387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Engineering of a Modular Group I Ribozyme to Control Its Activity by Self-Dimerization.
    Tanaka T; Ikawa Y; Matsumura S
    Methods Mol Biol; 2017; 1632():325-340. PubMed ID: 28730449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
    Ikawa Y; Tsuda K; Matsumura S; Atsumi S; Inoue T
    Nucleic Acids Res; 2003 Mar; 31(5):1488-96. PubMed ID: 12595557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The P5 activator of a group IC ribozyme can replace the P7.1/7.2 activator of a group IA ribozyme.
    Ikawa Y; Sasaki K; Tominaga H; Inoue T
    J Biochem; 2003 May; 133(5):665-70. PubMed ID: 12801919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of an RNA duplex on a ribozyme.
    Strobel SA; Cech TR
    Nat Struct Biol; 1994 Jan; 1(1):13-7. PubMed ID: 7544680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.