These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8925930)
1. Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. Fujiwara S; Lee SG; Haruki M; Kanaya S; Takagi M; Imanaka T FEBS Lett; 1996 Sep; 394(1):66-70. PubMed ID: 8925930 [TBL] [Abstract][Full Text] [Related]
2. Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Imanaka T; Lee S; Takagi M; Fujiwara S Gene; 1995 Oct; 164(1):153-6. PubMed ID: 7590306 [TBL] [Abstract][Full Text] [Related]
4. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L; Tumbula-Hansen D; Toogood H; Soll D Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374 [TBL] [Abstract][Full Text] [Related]
5. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. Briand C; Poterszman A; Eiler S; Webster G; Thierry J; Moras D J Mol Biol; 2000 Jun; 299(4):1051-60. PubMed ID: 10843857 [TBL] [Abstract][Full Text] [Related]
6. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Chuawong P; Hendrickson TL Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Songsiriritthigul C; Suebka S; Chen CJ; Fuengfuloy P; Chuawong P Acta Crystallogr F Struct Biol Commun; 2017 Feb; 73(Pt 2):62-69. PubMed ID: 28177315 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary divergence of the archaeal aspartyl-tRNA synthetases into discriminating and nondiscriminating forms. Tumbula-Hansen D; Feng L; Toogood H; Stetter KO; Söll D J Biol Chem; 2002 Oct; 277(40):37184-90. PubMed ID: 12149259 [TBL] [Abstract][Full Text] [Related]
9. Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Adul Rahman RN; Jongsareejit B; Fujiwara S; Imanaka T Appl Environ Microbiol; 1997 Jun; 63(6):2472-6. PubMed ID: 9172372 [TBL] [Abstract][Full Text] [Related]
10. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Becker HD; Giegé R; Kern D Biochemistry; 1996 Jun; 35(23):7447-58. PubMed ID: 8652522 [TBL] [Abstract][Full Text] [Related]
11. Yeast aspartyl-tRNA synthetase: a structural view of the aminoacylation reaction. Cavarelli J; Rees B; Thierry JC; Moras D Biochimie; 1993; 75(12):1117-23. PubMed ID: 8199247 [TBL] [Abstract][Full Text] [Related]
12. Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix. Escalante C; Yang DC J Biol Chem; 1993 Mar; 268(8):6014-23. PubMed ID: 8449960 [TBL] [Abstract][Full Text] [Related]
13. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related]
14. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Frugier M; Söll D; Giegé R; Florentz C Biochemistry; 1994 Aug; 33(33):9912-21. PubMed ID: 8060999 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of aspartyl-tRNA(Asp) in Escherichia coli--a snapshot of the second step. Eiler S; Dock-Bregeon A; Moulinier L; Thierry JC; Moras D EMBO J; 1999 Nov; 18(22):6532-41. PubMed ID: 10562565 [TBL] [Abstract][Full Text] [Related]
16. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. Eriani G; Gangloff J J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic potential in aminoacylation by aspartyl-tRNAs synthetase. Tsunoda M; Takenaka A; Cavarelli J; Rees B; Thierry JC; Moras D Nucleic Acids Symp Ser; 1995; (34):65-6. PubMed ID: 8841554 [TBL] [Abstract][Full Text] [Related]
18. Ammonium scanning in an enzyme active site. The chiral specificity of aspartyl-tRNA synthetase. Thompson D; Lazennec C; Plateau P; Simonson T J Biol Chem; 2007 Oct; 282(42):30856-68. PubMed ID: 17690095 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. Schmitt E; Moulinier L; Fujiwara S; Imanaka T; Thierry JC; Moras D EMBO J; 1998 Sep; 17(17):5227-37. PubMed ID: 9724658 [TBL] [Abstract][Full Text] [Related]