BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8926099)

  • 1. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.
    Rockey DD; Fischer ER; Hackstadt T
    Infect Immun; 1996 Oct; 64(10):4269-78. PubMed ID: 8926099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis.
    Hsia R; Ohayon H; Gounon P; Dautry-Varsat A; Bavoil PM
    Microbes Infect; 2000 Jun; 2(7):761-72. PubMed ID: 10955956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells.
    Rockey DD; Heinzen RA; Hackstadt T
    Mol Microbiol; 1995 Feb; 15(4):617-26. PubMed ID: 7783634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells.
    Wolf K; Hackstadt T
    Cell Microbiol; 2001 Mar; 3(3):145-52. PubMed ID: 11260137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins.
    Taraska T; Ward DM; Ajioka RS; Wyrick PB; Davis-Kaplan SR; Davis CH; Kaplan J
    Infect Immun; 1996 Sep; 64(9):3713-27. PubMed ID: 8751921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion.
    Rockey DD; Grosenbach D; Hruby DE; Peacock MG; Heinzen RA; Hackstadt T
    Mol Microbiol; 1997 Apr; 24(1):217-28. PubMed ID: 9140978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body.
    Rockey DD; Rosquist JL
    Infect Immun; 1994 Jan; 62(1):106-12. PubMed ID: 8262615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.
    Hackstadt T; Scidmore MA; Rockey DD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4877-81. PubMed ID: 7761416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA.
    Fields KA; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic observations concerning the in vivo uptake and release of the agent of guinea-pig inclusion conjunctivitis (Chlamydia psittaci) in guinea-pig exocervix.
    Soloff BL; Rank RG; Barron AL
    J Comp Pathol; 1985 Jul; 95(3):335-44. PubMed ID: 4031129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol.
    Brown WJ; Skeiky YA; Probst P; Rockey DD
    Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of host cell kinesin in the development of Chlamydia psittaci.
    Escalante-Ochoa C; Ducatelle R; Charlier G; De Vos K; Haesebrouck F
    Infect Immun; 1999 Oct; 67(10):5441-6. PubMed ID: 10496927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of chlamydial group Antigen in McCoy cell monolayers infected with Chlamydia trachomatis or Chlamydia psittaci.
    Richmond SJ; Stirling P
    Infect Immun; 1981 Nov; 34(2):561-70. PubMed ID: 7309240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic Analysis of the Chlamydia abortus Inclusion and Its Interaction with Those Formed by Other Chlamydial Species.
    Garvin LE; DeBoer AG; Carrell SJ; Wang X; Rockey DD
    Infect Immun; 2022 Mar; 90(3):e0049921. PubMed ID: 35099268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.