These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 892670)

  • 1. 5-Deoxy-5-fluoro-L-sorbose originating from 2-deoxy-2-fluoro-D-glucitol by fermentation with Acetomonas oxydans.
    Kulhánek M; Tadra M; Pacák J; Trejbalová H; Cerný M
    Folia Microbiol (Praha); 1977; 22(4):295-7. PubMed ID: 892670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans.
    Shinjoh M; Tomiyama N; Asakura A; Hoshino T
    Appl Environ Microbiol; 1995 Feb; 61(2):413-20. PubMed ID: 7574579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose.
    Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG
    J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X; Hua X; Zhou X; Xu Y; Zhang W
    Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025.
    Sugisawa T; Miyazaki T; Hoshino T
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):659-62. PubMed ID: 15785002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-glucitol catabolism in Stenotrophomonas maltophilia Ac.
    Brechtel E; Huwig A; Giffhorn F
    Appl Environ Microbiol; 2002 Feb; 68(2):582-7. PubMed ID: 11823194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose.
    Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ
    Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxyfluoroketohexoses: 4-deoxy-4-fluoro-D-sorbose and -tagatose and 5-deoxy-5-fluoro-L-sorbose.
    Rao GV; Que L; Hall LD; Fondy TP
    Carbohydr Res; 1975 Apr; 40(02):311-21. PubMed ID: 1149054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on sorbose fermentation in a batch and continuous cultures].
    Müller J
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(4):349-78. PubMed ID: 6012785
    [No Abstract]   [Full Text] [Related]  

  • 11. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003.
    Xu S; Wang X; Du G; Zhou J; Chen J
    Microb Cell Fact; 2014 Oct; 13():146. PubMed ID: 25323199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies on sorbose fermentation.
    Krieg P; Ettlinger L
    Pathol Microbiol (Basel); 1970; 36(5):343. PubMed ID: 5513574
    [No Abstract]   [Full Text] [Related]  

  • 13. Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis.
    Jaspers HT; van Steveninck J
    Biochim Biophys Acta; 1977 Sep; 469(3):292-300. PubMed ID: 20143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Researches to the conversion of sorbit into sorbose by Acetobacter suboxydans (author's transl)].
    Kölblin R; Tröger R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(3):196-203. PubMed ID: 22208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Sorbose metabolism in Agrobacterium tumefaciens.
    Van Keer C; Kersters K; De Ley J
    Antonie Van Leeuwenhoek; 1976; 42(1-2):13-24. PubMed ID: 1085123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel process for producing 6-deoxy monosaccharides from l-fucose by coupling and sequential enzymatic method.
    Shompoosang S; Yoshihara A; Uechi K; Asada Y; Morimoto K
    J Biosci Bioeng; 2016 Jan; 121(1):1-6. PubMed ID: 26031195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Deoxy-D-lyxo-hexonic acid from 2-deoxy-D-lyxo-hexose by Pseudomonas aeruginosa fermentation.
    Kulhánek M; Tadra M; Linek K; Kucár S
    Folia Microbiol (Praha); 1979; 24(2):185-7. PubMed ID: 110658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei.
    Yebra MAJ; Pérez-Martı Nez G
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2351-2359. PubMed ID: 12177329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in
    Liu L; Chen Y; Yu S; Chen J; Zhou J
    Synth Syst Biotechnol; 2022 Jun; 7(2):730-737. PubMed ID: 35356389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.