BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8927121)

  • 1. Aflatoxin formation and varietal difference of cow pea (Vigna unguiculata (L.) Walp.) and garden pea (Pisum sativum L.) cultivars.
    El-Kady IA; El-Maraghy SS; Zohri AA
    Mycopathologia; 1996; 133(3):185-8. PubMed ID: 8927121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspergillus infection and aflatoxin production in some cowpea (Vigna unguiculata (L.) Walp) lines in Tanzania.
    Seenappa M; Keswani CL; Kundya TM
    Mycopathologia; 1983 Nov; 83(2):103-6. PubMed ID: 6422301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal contamination, natural occurrence of mycotoxins and resistance for aflatoxin accumulation of some broad bean (Vicia faba L.) cultivars.
    Saber SM
    J Basic Microbiol; 1992; 32(4):249-58. PubMed ID: 1460568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.
    Meisrimler CN; Wienkoop S; Lyon D; Geilfus CM; Lüthje S
    J Proteomics; 2016 May; 140():13-23. PubMed ID: 27012544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycotoxin production on different cultivars and lines of broad bean (Vicia faba L.) seeds in Egypt.
    el-Kady IA; el-Maraghy SS; Zohri AA
    Mycopathologia; 1991 Mar; 113(3):165-9. PubMed ID: 1906134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Winged bean (Psophocarpus tetragonolobus (L.) DC) as a substrate for growth and aflatoxin production by aflatoxigenic strains of Aspergillus spp.
    Bean G; Fernando T
    Mycopathologia; 1986 Jan; 93(1):3-7. PubMed ID: 3083261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonprotein amino acids in edible lentil and garden pea seedlings.
    Rozan P; Kuo YH; Lambein F
    Amino Acids; 2001; 20(3):319-24. PubMed ID: 11354607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winged bean (Psophocarpus tetragonolobus (L.) DC) as a substrate for growth and aflatoxin production by aflatoxigenic strains of Aspergillus spp.
    Bean G; Fernando T
    Mycopathologia; 1985 Jun; 90(3):141-5. PubMed ID: 3929093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Half-embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens.
    Lurquin PF; Cai Z; Stiff CM; Fuerst EP
    Mol Biotechnol; 1998 Apr; 9(2):175-9. PubMed ID: 9658395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to
    Moral J; Garcia-Lopez MT; Gordon A; Ortega-Beltran A; Puckett R; Tomari K; Gradziel TM; Michailides TJ
    Plant Dis; 2022 Feb; 106(2):504-509. PubMed ID: 34569835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycoflora and aflatoxin production in pigeon pea stored in jute sacks and iron bins.
    Bankole SA; Eseigbe DA; Enikuomehin OA
    Mycopathologia; 1995-1996; 132(3):155-60. PubMed ID: 8684429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant-pathogenic fungi in seeds of different pea cultivars in poland.
    Wilman K; Stępień L; Fabiańska I; Kachlicki P
    Arh Hig Rada Toksikol; 2014 Sep; 65(3):329-38. PubMed ID: 25205690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate.
    Rangel A; Domont GB; Pedrosa C; Ferreira ST
    J Agric Food Chem; 2003 Sep; 51(19):5792-7. PubMed ID: 12952435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of some cereal grains and legume seeds for aflatoxin contamination in the Sudan.
    Abdel-Rahim AM; Osman NA; Idris MO
    Zentralbl Mikrobiol; 1989; 144(2):115-21. PubMed ID: 2501947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.
    Bedre R; Rajasekaran K; Mangu VR; Sanchez Timm LE; Bhatnagar D; Baisakh N
    PLoS One; 2015; 10(9):e0138025. PubMed ID: 26366857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L).
    Wang T; Zhang E; Chen X; Li L; Liang X
    BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.
    Nikolova I
    Bull Entomol Res; 2016 Apr; 106(2):268-77. PubMed ID: 26837535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycotoxin production on rice, pulses and oilseeds.
    Begum F; Samajpati N
    Naturwissenschaften; 2000 Jun; 87(6):275-7. PubMed ID: 10929292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome Map of Pea (
    Mamontova T; Lukasheva E; Mavropolo-Stolyarenko G; Proksch C; Bilova T; Kim A; Babakov V; Grishina T; Hoehenwarter W; Medvedev S; Smolikova G; Frolov A
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30558315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (
    Malovichko YV; Shtark OY; Vasileva EN; Nizhnikov AA; Antonets KS
    Cells; 2020 Mar; 9(3):. PubMed ID: 32210065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.