These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1084 related articles for article (PubMed ID: 8927696)
1. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696 [TBL] [Abstract][Full Text] [Related]
2. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations. Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049 [TBL] [Abstract][Full Text] [Related]
3. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status. Syljuåsen RG; Krolewski B; Little JB Cancer Res; 1999 Mar; 59(5):1008-14. PubMed ID: 10070956 [TBL] [Abstract][Full Text] [Related]
4. Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection. Nagasawa H; Keng P; Maki C; Yu Y; Little JB Cancer Res; 1998 May; 58(9):2036-41. PubMed ID: 9581850 [TBL] [Abstract][Full Text] [Related]
5. Radiosensitivity, apoptosis and repair of DNA double-strand breaks in radiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates. Hu Q; Hill RP Radiat Res; 1996 Dec; 146(6):636-45. PubMed ID: 8955713 [TBL] [Abstract][Full Text] [Related]
6. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells. Nagasawa H; Li CY; Maki CG; Imrich AC; Little JB Cancer Res; 1995 May; 55(9):1842-6. PubMed ID: 7728750 [TBL] [Abstract][Full Text] [Related]
7. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Li CY; Nagasawa H; Dahlberg WK; Little JB Oncogene; 1995 Nov; 11(9):1885-92. PubMed ID: 7478618 [TBL] [Abstract][Full Text] [Related]
8. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. O'Connor PM; Jackman J; Jondle D; Bhatia K; Magrath I; Kohn KW Cancer Res; 1993 Oct; 53(20):4776-80. PubMed ID: 8402660 [TBL] [Abstract][Full Text] [Related]
9. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Aldridge DR; Radford IR Cancer Res; 1998 Jul; 58(13):2817-24. PubMed ID: 9661896 [TBL] [Abstract][Full Text] [Related]
10. Induction of apoptosis and cell cycle-specific change in expression of p53 in normal lymphocytes and MOLT-4 leukemic cells by nitrogen mustard. Bhatia U; Danishefsky K; Traganos F; Darzynkiewicz Z Clin Cancer Res; 1995 Aug; 1(8):873-80. PubMed ID: 9816057 [TBL] [Abstract][Full Text] [Related]
11. [Cell cycle regulation after exposure to ionizing radiation]. Teyssier F; Bay JO; Dionet C; Verrelle P Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340 [TBL] [Abstract][Full Text] [Related]
12. Alterations in the progression of cells through the cell cycle after exposure to alpha particles or gamma rays. Gadbois DM; Crissman HA; Nastasi A; Habbersett R; Wang SK; Chen D; Lehnert BE Radiat Res; 1996 Oct; 146(4):414-24. PubMed ID: 8927713 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function. Bracey TS; Williams AC; Paraskeva C Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821 [TBL] [Abstract][Full Text] [Related]
14. Preferential radiosensitization in p53-mutated human tumour cell lines by pentoxifylline-mediated disruption of the G2/M checkpoint control. Strunz AM; Peschke P; Waldeck W; Ehemann V; Kissel M; Debus J Int J Radiat Biol; 2002 Aug; 78(8):721-32. PubMed ID: 12194756 [TBL] [Abstract][Full Text] [Related]
15. p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia. Denko NC; Green SL; Edwards D; Giaccia AJ Exp Cell Res; 2000 Jul; 258(1):82-91. PubMed ID: 10912790 [TBL] [Abstract][Full Text] [Related]
16. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Fan S; el-Deiry WS; Bae I; Freeman J; Jondle D; Bhatia K; Fornace AJ; Magrath I; Kohn KW; O'Connor PM Cancer Res; 1994 Nov; 54(22):5824-30. PubMed ID: 7954409 [TBL] [Abstract][Full Text] [Related]
17. Radiation-induced apoptosis in human non-small-cell lung cancer cell lines is secondary to cell-cycle progression beyond the G2-phase checkpoint. Stuschke M; Sak A; Wurm R; Sinn B; Wolf G; Stüben G; Budach V Int J Radiat Biol; 2002 Sep; 78(9):807-19. PubMed ID: 12428922 [TBL] [Abstract][Full Text] [Related]
18. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Namba H; Hara T; Tukazaki T; Migita K; Ishikawa N; Ito K; Nagataki S; Yamashita S Cancer Res; 1995 May; 55(10):2075-80. PubMed ID: 7743505 [TBL] [Abstract][Full Text] [Related]
19. p53-dependent signaling sustains DNA replication and enhances clonogenic survival in 254 nm ultraviolet-irradiated human fibroblasts. Cistulli CA; Kaufmann WK Cancer Res; 1998 May; 58(9):1993-2002. PubMed ID: 9581844 [TBL] [Abstract][Full Text] [Related]
20. Enhanced expression of the Kin17 protein immediately after low doses of ionizing radiation. Biard DS; Saintigny Y; Maratrat M; Paris F; Martin M; Angulo JF Radiat Res; 1997 Apr; 147(4):442-50. PubMed ID: 9092924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]