These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8928019)

  • 61. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements.
    Lewis G; Bhattaram A
    J Biomater Appl; 2006 Apr; 20(4):377-408. PubMed ID: 16443619
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Contrast bone cement.
    Bargar WL; Heiple KG; Weber S; Brown SA; Brown RH; Kotzar G
    J Orthop Res; 1983; 1(1):92-100. PubMed ID: 6679580
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A new bioactive bone cement: its histological and mechanical characterization.
    Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Creep behavior of hand-mixed Simplex P bone cement under cyclic tensile loading.
    Verdonschot N; Huiskes R
    J Appl Biomater; 1994; 5(3):235-43. PubMed ID: 10147450
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Antibiotic-loaded orthopedic cements. Pharmacokinetics and bone level].
    Langlais F; Bunetel L; Segui A; Sassi N; Cormier M
    Rev Chir Orthop Reparatrice Appar Mot; 1988; 74(6):493-503. PubMed ID: 3238082
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bone cement improved by vacuum mixing and chilling.
    Lidgren L; Bodelind B; Möller J
    Acta Orthop Scand; 1987 Feb; 58(1):27-32. PubMed ID: 3577737
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A comparison of 2 modern femoral cementing techniques: analysis by cement-bone interface pressure measurements, computerized image analysis, and static mechanical testing.
    Reading AD; McCaskie AW; Barnes MR; Gregg PJ
    J Arthroplasty; 2000 Jun; 15(4):479-87. PubMed ID: 10884209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of the flexural strength of five adhesive resin cements.
    Pace LL; Hummel SK; Marker VA; Bolouri A
    J Prosthodont; 2007; 16(1):18-24. PubMed ID: 17244303
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficacy of vacuum bone cement mixing systems in reducing methylmethacrylate fume exposure: comparison of 7 different mixing devices and handmixing.
    Schlegel UJ; Sturm M; Ewerbeck V; Breusch SJ
    Acta Orthop Scand; 2004 Oct; 75(5):559-66. PubMed ID: 15513487
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effect of centrifugation on the mechanical properties of cement. An in vitro total hip-arthroplasty model.
    Chin HC; Stauffer RN; Chao EY
    J Bone Joint Surg Am; 1990 Mar; 72(3):363-8. PubMed ID: 2312531
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Biomechanical strength of bone cement impregnated with diphosphonate].
    Cai XZ; Yan SG; Ying ZM; Xu YQ; Lü RK
    Zhonghua Wai Ke Za Zhi; 2009 Mar; 47(6):465-8. PubMed ID: 19595238
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of high-viscosity, two-paste bioactive bone cements.
    Deb S; Aiyathurai L; Roether JA; Luklinska ZB
    Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative analysis of the effect of porosity on the fatigue strength of bone cement.
    Hoey D; Taylor D
    Acta Biomater; 2009 Feb; 5(2):719-26. PubMed ID: 18835229
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Is there any difference between vacuum mixing systems in reducing bone cement porosity?
    Wang JS; Toksvig-Larsen S; Müller-Wille P; Franźen H
    J Biomed Mater Res; 1996; 33(2):115-9. PubMed ID: 8736030
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of initial temperature on free radical decay in PMMA bone cement.
    Turner RC; White FB; Park JB
    J Biomed Mater Res; 1982 Sep; 16(5):639-46. PubMed ID: 6290499
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of the antimicrobial peptide, Dhvar-5, on gentamicin release from a polymethyl methacrylate bone cement.
    Faber C; Hoogendoorn RJ; Lyaruu DM; Stallmann HP; van Marle J; van Nieuw Amerongen A; Smit TH; Wuisman PI;
    Biomaterials; 2005 Oct; 26(28):5717-26. PubMed ID: 15878377
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Standardization of implant materials shown by "bone cement". Comparative investigations in consideration of antibiotic admixtures (author's transl)].
    Ungethüm M; Hinterberger J
    Z Orthop Ihre Grenzgeb; 1978; 116(3):303-11. PubMed ID: 685385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.