BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8928614)

  • 1. Perilesional neurochemical changes in focal epilepsies.
    Wolf HK; Roos D; Blümcke I; Pietsch T; Wiestler OD
    Acta Neuropathol; 1996; 91(4):376-84. PubMed ID: 8928614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurochemical profile of glioneuronal lesions from patients with pharmacoresistant focal epilepsies.
    Wolf HK; Birkholz T; Wellmer J; Blümcke I; Pietsch T; Wiestler OD
    J Neuropathol Exp Neurol; 1995 Sep; 54(5):689-97. PubMed ID: 7666058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex.
    Aronica E; Redeker S; Boer K; Spliet WG; van Rijen PC; Gorter JA; Troost D
    Epilepsy Res; 2007 Apr; 74(1):33-44. PubMed ID: 17267178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal loss of the GABAA receptor alpha 1 subunit in patients with chronic pharmacoresistant epilepsies.
    Wolf HK; Spänle M; Müller MB; Elger CE; Schramm J; Wiestler OD
    Acta Neuropathol; 1994; 88(4):313-9. PubMed ID: 7839824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural antigens in oligodendrogliomas and dysembryoplastic neuroepithelial tumors.
    Wolf HK; Buslei R; Blümcke I; Wiestler OD; Pietsch T
    Acta Neuropathol; 1997 Nov; 94(5):436-43. PubMed ID: 9386775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-aspartate, AMPA and GABA(A) receptors.
    Mathern GW; Bertram EH; Babb TL; Pretorius JK; Kuhlman PA; Spradlin S; Mendoza D
    Neuroscience; 1997 Apr; 77(4):1003-19. PubMed ID: 9130782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered expression of alpha3-containing GABAA receptors in the neocortex of patients with focal epilepsy.
    Loup F; Picard F; André VM; Kehrli P; Yonekawa Y; Wieser HG; Fritschy JM
    Brain; 2006 Dec; 129(Pt 12):3277-89. PubMed ID: 17046856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glioneuronal malformative lesions and dysembryoplastic neuroepithelial tumors in patients with chronic pharmacoresistant epilepsies.
    Wolf HK; Wellmer J; Müller MB; Wiestler OD; Hufnagel A; Pietsch T
    J Neuropathol Exp Neurol; 1995 Mar; 54(2):245-54. PubMed ID: 7876892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neuropathologic findings in chronic epilepsy].
    Wolf HK; Wiestler OD
    Laryngorhinootologie; 1995 Feb; 74(2):127-9. PubMed ID: 7710607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surgical pathology of chronic epileptic seizure disorders.
    Wolf HK; Wiestler OD
    Brain Pathol; 1993 Oct; 3(4):371-80. PubMed ID: 8293193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy.
    Rossini L; Garbelli R; Gnatkovsky V; Didato G; Villani F; Spreafico R; Deleo F; Lo Russo G; Tringali G; Gozzo F; Tassi L; de Curtis M
    Ann Neurol; 2017 Sep; 82(3):331-341. PubMed ID: 28749594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuropathologic data in drug-resistant partial epilepsy. Report of a series of 195 cases].
    Pasquier B; Bost F; Peoc'h M; Barnoud R; Pasquier D
    Ann Pathol; 1996; 16(3):174-81. PubMed ID: 8766174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of phosphatidylinositol 3-kinase pathway components in epilepsy-associated glioneuronal lesions.
    Schick V; Majores M; Koch A; Elger CE; Schramm J; Urbach H; Becker AJ
    Epilepsia; 2007; 48 Suppl 5():65-73. PubMed ID: 17910583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased calmodulin-NR1 co-assembly as a mechanism for focal epilepsy in cortical dysplasia.
    Mikuni N; Nishiyama K; Babb TL; Ying Z; Najm I; Okamoto T; Lüders HO; Wylie C
    Neuroreport; 1999 May; 10(7):1609-12. PubMed ID: 10380990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of the reduction of GABA terminals in a model of focal epilepsy: a glutamic acid decarboxylase immunocytochemical study.
    Houser CR; Harris AB; Vaughn JE
    Brain Res; 1986 Sep; 383(1-2):129-45. PubMed ID: 3094829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies.
    Blümcke I; Wiestler OD
    J Neuropathol Exp Neurol; 2002 Jul; 61(7):575-84. PubMed ID: 12125736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multireceptor analysis in human neocortex reveals complex alterations of receptor ligand binding in focal epilepsies.
    Palomero-Gallagher N; Schleicher A; Bidmon HJ; Pannek HW; Hans V; Gorji A; Speckmann EJ; Zilles K
    Epilepsia; 2012 Nov; 53(11):1987-97. PubMed ID: 22957946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of glutamate receptor subunits in experimentally induced cortical malformations.
    Hagemann G; Kluska MM; Redecker C; Luhmann HJ; Witte OW
    Neuroscience; 2003; 117(4):991-1002. PubMed ID: 12654351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.
    Zilles K; Qü MS; Köhling R; Speckmann EJ
    Neuroscience; 1999; 94(4):1051-61. PubMed ID: 10625047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series.
    Knerlich-Lukoschus F; Connolly MB; Hendson G; Steinbok P; Dunham C
    J Neurosurg Pediatr; 2017 Feb; 19(2):182-195. PubMed ID: 27885945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.