BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8928752)

  • 1. Filled pore approximation: a theoretical framework for solute-solvent coupling in narrow water channels.
    Welling DJ; Welling PA; Welling LW
    Am J Physiol; 1996 Apr; 270(4 Pt 1):C1246-54. PubMed ID: 8928752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study.
    Verbavatz JM; Brown D; Sabolić I; Valenti G; Ausiello DA; Van Hoek AN; Ma T; Verkman AS
    J Cell Biol; 1993 Nov; 123(3):605-18. PubMed ID: 7693713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water permeability of gramicidin A-treated lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):341-50. PubMed ID: 81265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.
    Curry MR; Shachar-Hill B; Hill AE
    J Membr Biol; 2001 May; 181(2):115-23. PubMed ID: 11420598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs.
    Farinas J; Simanek V; Verkman AS
    Biophys J; 1995 Apr; 68(4):1613-20. PubMed ID: 7540430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic flow in membrane pores of molecular size.
    Hill AE
    J Membr Biol; 1994 Feb; 137(3):197-203. PubMed ID: 7514228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM; Antonenko YN; Koeppe RE; Pohl P
    Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic water transport in aquaporins: evidence for a stochastic mechanism.
    Zeuthen T; Alsterfjord M; Beitz E; MacAulay N
    J Physiol; 2013 Oct; 591(20):5017-29. PubMed ID: 23959676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium.
    Guo P; Weinstein AM; Weinbaum S
    Am J Physiol Renal Physiol; 2003 Aug; 285(2):F241-57. PubMed ID: 12670832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of water in proximal kidney tubules from whole tubules to single channels: length and section of the selectivity filter of aquaporin-1.
    Whittembury G; González E; Hernández CS; Gutiérrez AM; Echevarría M
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):477-84. PubMed ID: 9261989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proximal straight tubule (PST) basolateral cell membrane water channel: selectivity characteristics.
    Gutiérrez AM; González E; Echevarría M; Hernández CS; Whittembury G
    J Membr Biol; 1995 Feb; 143(3):189-97. PubMed ID: 7539498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquaporin CHIP: the archetypal molecular water channel.
    Agre P; Preston GM; Smith BL; Jung JS; Raina S; Moon C; Guggino WB; Nielsen S
    Am J Physiol; 1993 Oct; 265(4 Pt 2):F463-76. PubMed ID: 7694481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology of the aquaporin water channels.
    King LS; Agre P
    Annu Rev Physiol; 1996; 58():619-48. PubMed ID: 8815812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule.
    Soveral G; Macey RI; Moura TF
    Biol Cell; 1997 Aug; 89(5-6):275-82. PubMed ID: 9468597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length of the selectivity filter of aquaporin-1.
    Whittembury G; González E; Gutiérrez AM; Echevarría M; Hernández CS
    Biol Cell; 1997 Aug; 89(5-6):299-306. PubMed ID: 9468600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a fiber-matrix model to transport in renal tubules.
    Fraser WD; Baines AD
    J Gen Physiol; 1989 Nov; 94(5):863-79. PubMed ID: 2512369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport and ion-water interaction in the gramicidin channel.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):501-8. PubMed ID: 6168311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the CHIP28 water channel in rat kidney.
    Sabolić I; Valenti G; Verbavatz JM; Van Hoek AN; Verkman AS; Ausiello DA; Brown D
    Am J Physiol; 1992 Dec; 263(6 Pt 1):C1225-33. PubMed ID: 1282299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water channel expression in human ADPKD kidneys.
    Bachinsky DR; Sabolic I; Emmanouel DS; Jefferson DM; Carone FA; Brown D; Perrone RD
    Am J Physiol; 1995 Mar; 268(3 Pt 2):F398. PubMed ID: 7535000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of kidney water channels.
    Verkman AS; Shi LB; Frigeri A; Hasegawa H; Farinas J; Mitra A; Skach W; Brown D; Van Hoek AN; Ma T
    Kidney Int; 1995 Oct; 48(4):1069-81. PubMed ID: 8569068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.