BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8928902)

  • 1. cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo.
    Mathur A; Golombek DA; Ralph MR
    Am J Physiol; 1996 May; 270(5 Pt 2):R1031-6. PubMed ID: 8928902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo.
    Weber ET; Gannon RL; Rea MA
    Neurosci Lett; 1995 Sep; 197(3):227-30. PubMed ID: 8552305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmicity of the cGMP-related signal transduction pathway in the mammalian circadian system.
    Ferreyra GA; Golombek DA
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1348-55. PubMed ID: 11294753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain.
    Tischkau SA; Weber ET; Abbott SM; Mitchell JW; Gillette MU
    J Neurosci; 2003 Aug; 23(20):7543-50. PubMed ID: 12930792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock.
    Liu C; Ding JM; Faiman LE; Gillette MU
    J Neurosci; 1997 Jan; 17(2):659-66. PubMed ID: 8987788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents.
    Plano SA; Agostino PV; de la Iglesia HO; Golombek DA
    PLoS One; 2012; 7(5):e37121. PubMed ID: 22590651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling in the mammalian circadian clock: the NO/cGMP pathway.
    Golombek DA; Agostino PV; Plano SA; Ferreyra GA
    Neurochem Int; 2004 Nov; 45(6):929-36. PubMed ID: 15312987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of G-Substrate in the NO/cGMP/PKG Signal Transduction Pathway for Photic Entrainment of the Hamster Circadian Clock.
    Plano SA; Alessandro MS; Trebucq LL; Endo S; Golombek DA; Chiesa JJ
    ASN Neuro; 2021; 13():1759091420984920. PubMed ID: 33430619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects.
    Prosser RA; McArthur AJ; Gillette MU
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6812-5. PubMed ID: 2549549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of intracellular cyclic GMP and cyclic GMP-dependent protein kinase in alpha-elastin-induced macrophage chemotaxis.
    Kamisato S; Uemura Y; Takami N; Okamoto K
    J Biochem; 1997 May; 121(5):862-7. PubMed ID: 9192726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.
    Gannon RL; Garcia DA; Millan MJ
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):964-73. PubMed ID: 24388152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules.
    Agostino PV; Plano SA; Golombek DA
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9834-9. PubMed ID: 17519328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KN-62, an inhibitor of Ca2+/calmodulin kinase II, attenuates circadian responses to light.
    Golombek DA; Ralph MR
    Neuroreport; 1994 Aug; 5(13):1638-40. PubMed ID: 7819537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP.
    Dhanakoti SN; Gao Y; Nguyen MQ; Raj JU
    J Appl Physiol (1985); 2000 May; 88(5):1637-42. PubMed ID: 10797124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.
    Moriya T; Yoshinobu Y; Ikeda M; Yokota S; Akiyama M; Shibata S
    Br J Pharmacol; 1998 Nov; 125(6):1281-7. PubMed ID: 9863658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of GABA transaminase enhances light-induced circadian phase delays but not advances.
    Golombek DA; Ralph MR
    J Biol Rhythms; 1994; 9(3-4):251-61. PubMed ID: 7772793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei.
    Coogan AN; Piggins HD
    Eur J Neurosci; 2005 Jul; 22(1):158-68. PubMed ID: 16029205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.