These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8929436)

  • 1. Organization of octopus arm movements: a model system for studying the control of flexible arms.
    Gutfreund Y; Flash T; Yarom Y; Fiorito G; Segev I; Hochner B
    J Neurosci; 1996 Nov; 16(22):7297-307. PubMed ID: 8929436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.
    Hanassy S; Botvinnik A; Flash T; Hochner B
    Bioinspir Biomim; 2015 May; 10(3):035001. PubMed ID: 25970857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of arm muscle activation involved in octopus reaching movements.
    Gutfreund Y; Flash T; Fiorito G; Hochner B
    J Neurosci; 1998 Aug; 18(15):5976-87. PubMed ID: 9671683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.
    Richter JN; Hochner B; Kuba MJ
    J Exp Biol; 2015 Apr; 218(Pt 7):1069-76. PubMed ID: 25687436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing octopus movements using three-dimensional reconstruction.
    Yekutieli Y; Mitelman R; Hochner B; Flash T
    J Neurophysiol; 2007 Sep; 98(3):1775-90. PubMed ID: 17625060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobiology: motor control of flexible octopus arms.
    Sumbre G; Fiorito G; Flash T; Hochner B
    Nature; 2005 Feb; 433(7026):595-6. PubMed ID: 15703737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
    Yekutieli Y; Sagiv-Zohar R; Aharonov R; Engel Y; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1443-58. PubMed ID: 15829594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other.
    Nesher N; Levy G; Grasso FW; Hochner B
    Curr Biol; 2014 Jun; 24(11):1271-5. PubMed ID: 24835454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of octopus arm extension by a peripheral motor program.
    Sumbre G; Gutfreund Y; Fiorito G; Flash T; Hochner B
    Science; 2001 Sep; 293(5536):1845-8. PubMed ID: 11546877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to move with no rigid skeleton? The octopus has the answers.
    Yekutieli Y; Sumbre G; Flash T; Hochner B
    Biologist (London); 2002 Dec; 49(6):250-4. PubMed ID: 12486300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octopus vulgaris uses visual information to determine the location of its arm.
    Gutnick T; Byrne RA; Hochner B; Kuba M
    Curr Biol; 2011 Mar; 21(6):460-2. PubMed ID: 21396818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octopus arms exhibit exceptional flexibility.
    Kennedy EBL; Buresch KC; Boinapally P; Hanlon RT
    Sci Rep; 2020 Nov; 10(1):20872. PubMed ID: 33257824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Octopuses use a human-like strategy to control precise point-to-point arm movements.
    Sumbre G; Fiorito G; Flash T; Hochner B
    Curr Biol; 2006 Apr; 16(8):767-72. PubMed ID: 16631583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y; Sagiv-Zohar R; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1459-68. PubMed ID: 15829593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D octopus kinematics of complex postures: Translation to long, thin, soft devices and their potential for clinical use.
    Weidig G; Bush B; Jimenez F; Pelled G; Bush TR
    PLoS One; 2024; 19(5):e0303608. PubMed ID: 38809854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris.
    Gutnick T; Zullo L; Hochner B; Kuba MJ
    Curr Biol; 2020 Nov; 30(21):4322-4327.e3. PubMed ID: 32916119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonsomatotopic organization of the higher motor centers in octopus.
    Zullo L; Sumbre G; Agnisola C; Flash T; Hochner B
    Curr Biol; 2009 Oct; 19(19):1632-6. PubMed ID: 19765993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm coordination in octopus crawling involves unique motor control strategies.
    Levy G; Flash T; Hochner B
    Curr Biol; 2015 May; 25(9):1195-200. PubMed ID: 25891406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.
    Margheri L; Laschi C; Mazzolai B
    Bioinspir Biomim; 2012 Jun; 7(2):025004. PubMed ID: 22617132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.