These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8929578)

  • 1. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats.
    Dubouchaud H; Granier P; Mercier J; Le Peuch C; Prefaut C
    J Appl Physiol (1985); 1996 Feb; 80(2):416-21. PubMed ID: 8929578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of hypodynamia on initial speed of lactate transport in skeletal muscle sarcolemmal vesicles in rats].
    Dubouchaud H; Granier P; Mercier J; Prefaut C
    C R Seances Soc Biol Fil; 1995; 189(2):339-46. PubMed ID: 8590233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 2-chloropropionate on initial lactate uptake by rat skeletal muscle sarcolemmal vesicles.
    Granier P; Dubouchaud H; Eydoux N; Mercier J; Préfaut C
    J Appl Physiol (1985); 1996 Nov; 81(5):1973-7. PubMed ID: 8941518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise.
    Dubouchaud H; Eydoux N; Granier P; Préfaut C; Mercier J
    J Appl Physiol (1985); 1999 Sep; 87(3):955-61. PubMed ID: 10484563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats.
    Yajid F; Mercier JG; Mercier BM; Dubouchaud H; Préfaut C
    J Appl Physiol (1985); 1998 Feb; 84(2):479-85. PubMed ID: 9475856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training does not affect zero-trans lactate transport across mixed rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    J Appl Physiol (1985); 1993 Oct; 75(4):1559-65. PubMed ID: 8282604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a myocardial volume overload on lactate transport in skeletal muscle sarcolemmal vesicles.
    Aschenbach WG; Brower GL; Talmadge RJ; Dobson JL; Gladden LB
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R176-86. PubMed ID: 11404292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise.
    Eydoux N; Dubouchaud H; Py G; Granier P; Préfaut C; Mercier J
    Int J Sports Med; 2000 Aug; 21(6):393-9. PubMed ID: 10961513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streptozotocin-induced diabetes decreases rat sarcolemmal lactate transport.
    Py G; Eydoux N; Perez-Martin A; Raynaud E; Brun JF; Préfaut C; Mercier J
    Metabolism; 2001 Apr; 50(4):418-24. PubMed ID: 11288036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship.
    Demirel HA; Powers SK; Naito H; Hughes M; Coombes JS
    J Appl Physiol (1985); 1999 Mar; 86(3):1002-8. PubMed ID: 10066716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate transport in rat sarcolemmal vesicles and intact skeletal muscle, and after muscle contraction.
    McDermott JC; Bonen A
    Acta Physiol Scand; 1994 May; 151(1):17-28. PubMed ID: 8048333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate transport studied in sarcolemmal giant vesicles from rat skeletal muscles: effect of denervation.
    Pilegaard H; Juel C
    Am J Physiol; 1995 Oct; 269(4 Pt 1):E679-82. PubMed ID: 7485481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats.
    Py G; Lambert K; Perez-Martin A; Raynaud E; Préfaut C; Mercier J
    Am J Physiol Endocrinol Metab; 2001 Dec; 281(6):E1308-15. PubMed ID: 11701447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of lactate transport in sarcolemmal giant vesicles obtained from human skeletal muscle.
    Juel C; Kristiansen S; Pilegaard H; Wojtaszewski J; Richter EA
    J Appl Physiol (1985); 1994 Mar; 76(3):1031-6. PubMed ID: 8005842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age effect on expression of myosin heavy and light chain isoforms in suspended rat soleus muscle.
    Saitoh A; Okumoto T; Nakano H; Wada M; Katsuta S
    J Appl Physiol (1985); 1999 May; 86(5):1483-9. PubMed ID: 10233108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hindlimb suspension induces the expression of multiple myosin heavy chain isoforms in single fibres of the rat soleus muscle.
    Oishi Y; Ishihara A; Yamamoto H; Miyamoto E
    Acta Physiol Scand; 1998 Feb; 162(2):127-34. PubMed ID: 9550224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced insulin action on glucose transport and insulin signaling in 7-day unweighted rat soleus muscle.
    O'Keefe MP; Perez FR; Sloniger JA; Tischler ME; Henriksen EJ
    J Appl Physiol (1985); 2004 Jul; 97(1):63-71. PubMed ID: 15004002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle adaptations to hindlimb suspension in mature and old Fischer 344 rats.
    Stump CS; Tipton CM; Henriksen EJ
    J Appl Physiol (1985); 1997 Jun; 82(6):1875-81. PubMed ID: 9173953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity influences on soleus muscle myosin during rodent hindlimb suspension.
    Thomason DB; Herrick RE; Baldwin KM
    J Appl Physiol (1985); 1987 Jul; 63(1):138-44. PubMed ID: 3624121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.