These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 8929917)
1. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area. Miyamoto E; Fukunaga K Neurosci Res; 1996 Jan; 24(2):117-22. PubMed ID: 8929917 [TBL] [Abstract][Full Text] [Related]
2. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602 [TBL] [Abstract][Full Text] [Related]
3. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Oomura Y; Hori N; Shiraishi T; Fukunaga K; Takeda H; Tsuji M; Matsumiya T; Ishibashi M; Aou S; Li XL; Kohno D; Uramura K; Sougawa H; Yada T; Wayner MJ; Sasaki K Peptides; 2006 Nov; 27(11):2738-49. PubMed ID: 16914228 [TBL] [Abstract][Full Text] [Related]
4. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554 [TBL] [Abstract][Full Text] [Related]
5. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
6. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589 [TBL] [Abstract][Full Text] [Related]
7. The molecular basis of CaMKII function in synaptic and behavioural memory. Lisman J; Schulman H; Cline H Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750 [TBL] [Abstract][Full Text] [Related]
8. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. Zhao D; Watson JB; Xie CW J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428 [TBL] [Abstract][Full Text] [Related]
9. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131 [TBL] [Abstract][Full Text] [Related]
10. CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region. Moriguchi S; Shioda N; Han F; Narahashi T; Fukunaga K J Neurochem; 2008 Aug; 106(3):1092-103. PubMed ID: 18445137 [TBL] [Abstract][Full Text] [Related]
11. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nicoll RA; Malenka RC Nature; 1995 Sep; 377(6545):115-8. PubMed ID: 7675078 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Huang YY; Kandel ER Learn Mem; 1994; 1(1):74-82. PubMed ID: 10467587 [TBL] [Abstract][Full Text] [Related]
14. A developmental switch in the signaling cascades for LTP induction. Yasuda H; Barth AL; Stellwagen D; Malenka RC Nat Neurosci; 2003 Jan; 6(1):15-6. PubMed ID: 12469130 [TBL] [Abstract][Full Text] [Related]
15. Excitatory interactions between glutamate receptors and protein kinases. Soderling TR; Tan SE; McGlade-McCulloh E; Yamamoto H; Fukunaga K J Neurobiol; 1994 Mar; 25(3):304-11. PubMed ID: 7910847 [TBL] [Abstract][Full Text] [Related]
16. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Lengyel I; Voss K; Cammarota M; Bradshaw K; Brent V; Murphy KP; Giese KP; Rostas JA; Bliss TV Eur J Neurosci; 2004 Dec; 20(11):3063-72. PubMed ID: 15579161 [TBL] [Abstract][Full Text] [Related]
17. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
19. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Margrie TW; Rostas JA; Sah P Nat Neurosci; 1998 Sep; 1(5):378-83. PubMed ID: 10196527 [TBL] [Abstract][Full Text] [Related]
20. Long-term potentiation is mediated by multiple kinase cascades involving CaMKII or either PKA or p42/44 MAPK in the adult rat dentate gyrus in vitro. Wu J; Rowan MJ; Anwyl R J Neurophysiol; 2006 Jun; 95(6):3519-27. PubMed ID: 16709720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]