These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8929917)

  • 21. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS; Shi SH; Ule J; Ruggiu M; Barker LA; Darnell RB; Jan YN; Jan LY
    Cell; 2005 Oct; 123(1):105-18. PubMed ID: 16213216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in Ca(2+)/calmodulin-dependent protein kinase II activity and its relation to performance in passive avoidance response and long-term potentiation formation in mice prenatally exposed to diethylstilbestrol.
    Kaitsuka T; Fukunaga K; Soeda F; Shirasaki T; Miyamoto E; Takahama K
    Neuroscience; 2007 Feb; 144(4):1415-24. PubMed ID: 17184923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency-dependent impairment of hippocampal LTP from NMDA receptors with reduced calcium permeability.
    Pawlak V; Jensen V; Schupp BJ; Kvello A; Hvalby Ø; Seeburg PH; Köhr G
    Eur J Neurosci; 2005 Jul; 22(2):476-84. PubMed ID: 16045500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory.
    Rongo C
    Bioessays; 2002 Mar; 24(3):223-33. PubMed ID: 11891759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus.
    Lanté F; de Jésus Ferreira MC; Guiramand J; Récasens M; Vignes M
    Hippocampus; 2006; 16(4):345-60. PubMed ID: 16302229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD; Iyengar R; Landau EM
    Biol Psychiatry; 2005 Jan; 57(2):113-9. PubMed ID: 15652868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced basal CaMKII levels in hippocampal CA1 region: possible cause of stress-induced impairment of LTP in chronically stressed rats.
    Gerges NZ; Aleisa AM; Schwarz LA; Alkadhi KA
    Hippocampus; 2004; 14(3):402-10. PubMed ID: 15132438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus.
    Volianskis A; Jensen MS
    J Physiol; 2003 Jul; 550(Pt 2):459-92. PubMed ID: 12794181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Regulation of synaptic efficacy by neural activity in the hippocampus].
    Fukunaga K; Miyamoto E
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):474-82. PubMed ID: 10707659
    [No Abstract]   [Full Text] [Related]  

  • 31. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current studies on a working model of CaM kinase II in hippocampal long-term potentiation and memory.
    Fukunaga K; Miyamoto E
    Jpn J Pharmacol; 1999 Jan; 79(1):7-15. PubMed ID: 10082312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation.
    Zhuo M; Hu Y; Schultz C; Kandel ER; Hawkins RD
    Nature; 1994 Apr; 368(6472):635-9. PubMed ID: 7908417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of calmodulin-dependent protein kinases-I and -IV in long-term potentiation.
    Tokuda M; Ahmed BY; Lu YF; Matsui H; Miyamoto O; Yamaguchi F; Konishi R; Hatase O
    Brain Res; 1997 Apr; 755(1):162-6. PubMed ID: 9163554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction.
    Huang CC; Chou PH; Yang CH; Hsu KS
    J Physiol; 2005 Dec; 569(Pt 3):789-99. PubMed ID: 16223759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene targeting: a new approach for the analysis of mammalian memory and learning.
    Tonegawa S
    Prog Clin Biol Res; 1994; 390():5-18. PubMed ID: 7724650
    [No Abstract]   [Full Text] [Related]  

  • 38. Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice.
    Moriguchi S; Yabuki Y; Fukunaga K
    J Neurochem; 2012 Feb; 120(4):541-51. PubMed ID: 22136399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of compartment- and process-specific molecules required for "synaptic tagging" during long-term potentiation and long-term depression in hippocampal CA1.
    Sajikumar S; Navakkode S; Frey JU
    J Neurosci; 2007 May; 27(19):5068-80. PubMed ID: 17494693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus.
    Miyamoto E
    J Pharmacol Sci; 2006; 100(5):433-42. PubMed ID: 16799259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.