These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8930001)

  • 41. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.
    Gillis GB; Flynn JP; McGuigan P; Biewener AA
    J Exp Biol; 2005 Dec; 208(Pt 24):4599-611. PubMed ID: 16326942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A biomechanical paradox in fish: swimming and suction feeding produce orthogonal strain gradients in the axial musculature.
    Jimenez YE; Marsh RL; Brainerd EL
    Sci Rep; 2021 May; 11(1):10334. PubMed ID: 33990621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.
    Rome LC
    Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1995-2016. PubMed ID: 17553779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres.
    Irving M
    J Physiol; 1993 Dec; 472():127-56. PubMed ID: 8145138
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus).
    Gillis GB; Biewener AA
    J Exp Biol; 2000 Dec; 203(Pt 23):3547-63. PubMed ID: 11060216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Muscle strain histories in swimming milkfish in steady and sprinting gaits.
    Katz SL; Shadwick RE; Rapoport HS
    J Exp Biol; 1999 Mar; 202 (Pt 5)():529-41. PubMed ID: 9929456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development.
    Müller UK; van Leeuwen JL
    J Exp Biol; 2004 Feb; 207(Pt 5):853-68. PubMed ID: 14747416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The predominant stride-frequency for routine swimming in catsharks (Scyliorhinus canicula) generates high power at high efficiency in the red musculature.
    West TG; Curtin NA; Woledge RC
    J Muscle Res Cell Motil; 2023 Sep; 44(3):193-199. PubMed ID: 36422773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myosin heavy chain and parvalbumin expression in swimming and feeding muscles of centrarchid fishes: the molecular basis of the scaling of contractile properties.
    Campion LA; Choi S; Mistry HL; Coughlin DJ
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Oct; 163(2):223-30. PubMed ID: 22705556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Slow muscle function of Pacific bonito (Sarda chiliensis) during steady swimming.
    Ellerby DJ; Altringham JD; Williams T; Block BA
    J Exp Biol; 2000 Jul; 203(Pt 13):2001-13. PubMed ID: 10851117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of fiber type on force depression after active shortening in skeletal muscle.
    Joumaa V; Power GA; Hisey B; Caicedo A; Stutz J; Herzog W
    J Biomech; 2015 Jul; 48(10):1687-92. PubMed ID: 26091619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Muscle strain is modulated more with running slope than speed in wild turkey knee and hip extensors.
    Roberts TJ; Higginson BK; Nelson FE; Gabaldón AM
    J Exp Biol; 2007 Jul; 210(Pt 14):2510-7. PubMed ID: 17601955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Power production during steady swimming in largemouth bass and rainbow trout.
    Coughlin DJ
    J Exp Biol; 2000 Feb; 203(Pt 3):617-29. PubMed ID: 10637190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment.
    Jayne BC; Lauder GV
    J Comp Physiol A; 1994 Jul; 175(1):123-31. PubMed ID: 8083846
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanics of fast-start swimming in fish.
    Wakeling JM
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):31-40. PubMed ID: 11733164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal design of vertebrate and insect sarcomeres.
    Otten E
    J Morphol; 1987 Jan; 191(1):49-62. PubMed ID: 3820311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.
    West JM; Barclay CJ; Luff AR; Walker DW
    J Muscle Res Cell Motil; 1999 Apr; 20(3):249-64. PubMed ID: 10471989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling red muscle power output during steady and unsteady swimming in largemouth bass.
    Johnson TP; Syme DA; Jayne BC; Lauder GV; Bennett AF
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R481-8. PubMed ID: 8067458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast muscle function in the European eel (Anguilla anguilla L.) during aquatic and terrestrial locomotion.
    Ellerby DJ; Spierts IL; Altringham JD
    J Exp Biol; 2001 Jul; 204(Pt 13):2231-8. PubMed ID: 11507107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.