These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

23 related articles for article (PubMed ID: 8930306)

  • 1. Myelin development, plasticity, and pathology in the auditory system.
    Long P; Wan G; Roberts MT; Corfas G
    Dev Neurobiol; 2018 Feb; 78(2):80-92. PubMed ID: 28925106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial Cell Contributions to Auditory Brainstem Development.
    Cramer KS; Rubel EW
    Front Neural Circuits; 2016; 10():83. PubMed ID: 27818624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain.
    Kaiser O; Aliuos P; Wissel K; Lenarz T; Werner D; Reuter G; Kral A; Warnecke A
    PLoS One; 2013; 8(12):e80490. PubMed ID: 24349001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A developmental shift from GABAergic to glycinergic transmission in the central auditory system.
    Kotak VC; Korada S; Schwartz IR; Sanes DH
    J Neurosci; 1998 Jun; 18(12):4646-55. PubMed ID: 9614239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ganglioside rafts as MAG receptors that mediate blockade of axon growth.
    McKerracher L
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7811-3. PubMed ID: 12060723
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve.
    Martini R; Schachner M
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2439-48. PubMed ID: 2430983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice.
    Bartsch U; Kirchhoff F; Schachner M
    J Comp Neurol; 1989 Jun; 284(3):451-62. PubMed ID: 2474006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and molecular heterogeneity of astrocytes and oligodendrocytes in the gerbil lateral superior olive.
    Hafidi A; Sanes DH; Hillman DE; Kedeshian P
    Neuroscience; 1994 May; 60(2):503-19. PubMed ID: 7521025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive.
    Scott LL; Hage TA; Golding NL
    J Physiol; 2007 Sep; 583(Pt 2):647-61. PubMed ID: 17627992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil.
    Kil J; Kageyama GH; Semple MN; Kitzes LM
    J Comp Neurol; 1995 Mar; 353(3):317-40. PubMed ID: 7751434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of MAG, MBP and L1 in the developing lateral superior olive.
    Hafidi A; Katz JA; Sanes DH
    Brain Res; 1996 Oct; 736(1-2):35-43. PubMed ID: 8930306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and influence of inhibition in the lateral superior olivary nucleus.
    Sanes DH; Friauf E
    Hear Res; 2000 Sep; 147(1-2):46-58. PubMed ID: 10962172
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.