BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 8930831)

  • 1. Characterization of apamin-sensitive Ca(2+)-activated potassium channels in human leukaemic T lymphocytes.
    Hanselmann C; Grissmer S
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):627-37. PubMed ID: 8930831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells.
    Kozak JA; Misler S; Logothetis DE
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):355-70. PubMed ID: 9575286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of Ca(2+)-dependent inwardly rectifying K+ currents in HeLa cells.
    Díaz M; Sepúlveda FV
    Pflugers Arch; 1995 Jun; 430(2):168-80. PubMed ID: 7545810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SK2 encodes the apamin-sensitive Ca(2+)-activated K(+) channels in the human leukemic T cell line, Jurkat.
    Jäger H; Adelman JP; Grissmer S
    FEBS Lett; 2000 Mar; 469(2-3):196-202. PubMed ID: 10713270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-activated K+ channels in human leukemic T cells.
    Grissmer S; Lewis RS; Cahalan MD
    J Gen Physiol; 1992 Jan; 99(1):63-84. PubMed ID: 1371308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly co-operative Ca2+ activation of intermediate-conductance K+ channels in granulocytes from a human cell line.
    Varnai P; Demaurex N; Jaconi M; Schlegel W; Lew DP; Krause KH
    J Physiol; 1993 Dec; 472():373-90. PubMed ID: 7511688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle.
    Holland M; Langton PD; Standen NB; Boyle JP
    Br J Pharmacol; 1996 Jan; 117(1):119-29. PubMed ID: 8825352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion selectivity and gating of small conductance Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells.
    Park YB
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):555-70. PubMed ID: 7707225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation specificity and pharmacological properties of the Ca(2+)-dependent K+ channel of rat cortical collecting ducts.
    Schlatter E; Bleich M; Hirsch J; Markstahler U; Fröbe U; Greger R
    Pflugers Arch; 1993 Feb; 422(5):481-91. PubMed ID: 7682688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of large conductance Ca2+-activated (BKCa), delayed rectifier (KV) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery.
    Prior HM; Yates MS; Beech DJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):159-69. PubMed ID: 9679171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in outward K(+) currents on removal of external Ca(2+) in human atrial myocytes.
    Bertaso F; Hendry BM; Donohoe P; James AF
    Biochem Biophys Res Commun; 2000 Jun; 273(1):10-6. PubMed ID: 10873555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.
    Devor DC; Frizzell RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of riluzole-induced stimulation of large-conductance calcium-activated potassium channels in rat pituitary GH3 cells.
    Wu SN; Li HF
    J Investig Med; 1999 Nov; 47(9):484-95. PubMed ID: 10572379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A charybdotoxin-insensitive conductance in human T lymphocytes: T cell membrane potential is set by distinct K+ channels.
    Verheugen JA; Korn H
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):317-31. PubMed ID: 9306275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.