BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8930913)

  • 1. The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini.
    Pato ML; Banerjee M
    Mol Microbiol; 1996 Oct; 22(2):283-92. PubMed ID: 8930913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central location of the Mu strong gyrase binding site is obligatory for optimal rates of replicative transposition.
    Pato ML
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7056-60. PubMed ID: 8041745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement of the bacteriophage Mu strong gyrase site and effect on Mu DNA replication.
    Pato ML; Banerjee M
    J Bacteriol; 1999 Sep; 181(18):5783-9. PubMed ID: 10482521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of Mu prophages lacking the central strong gyrase site.
    Pato ML
    Res Microbiol; 2004 Sep; 155(7):553-8. PubMed ID: 15313255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the strong gyrase site (SGS) of bacteriophage Mu: localization of determinants required for promoting Mu replication.
    Pato ML; Banerjee M
    Mol Microbiol; 2000 Aug; 37(4):800-10. PubMed ID: 10972802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Mu prophage lacking the central strong gyrase binding site: localization of the block in replication.
    Pato ML; Karlok M; Wall C; Higgins NP
    J Bacteriol; 1995 Oct; 177(20):5937-42. PubMed ID: 7592347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA gyrase-binding site at the center of the bacteriophage Mu genome is required for efficient replicative transposition.
    Pato ML; Howe MM; Higgins NP
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8716-20. PubMed ID: 2174162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity.
    Oram M; Howells AJ; Maxwell A; Pato ML
    Mol Microbiol; 2003 Oct; 50(1):333-47. PubMed ID: 14507384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient mu DNA replication.
    Oram M; Pato ML
    J Bacteriol; 2004 Jul; 186(14):4575-84. PubMed ID: 15231790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli.
    Saha RP; Lou Z; Meng L; Harshey RM
    PLoS Genet; 2013 Nov; 9(11):e1003902. PubMed ID: 24244182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism.
    Oram M; Travers AA; Howells AJ; Maxwell A; Pato ML
    J Bacteriol; 2006 Jan; 188(2):619-32. PubMed ID: 16385052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA gyrase requirements distinguish the alternate pathways of Mu transposition.
    Sokolsky TD; Baker TA
    Mol Microbiol; 2003 Jan; 47(2):397-409. PubMed ID: 12519191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of bacteriophage Mu DNA replicative transposition: analysis of the first round after induction.
    Reich C; Waggoner BT; Pato ML
    EMBO J; 1984 Jul; 3(7):1507-11. PubMed ID: 6235109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of bacteriophage Mu in E. coli gyrBts mutant strain].
    Velikodvorskaia GA; Abdrashitova AI; Mirkin SM; Mogutov MA; Piruzian ES
    Mol Gen Mikrobiol Virusol; 1985 Jun; (6):15-20. PubMed ID: 3025711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mu DNA reintegration upon excision: evidence for a possible involvement of nucleoid folding.
    Paolozzi L; Fabozzi G; Ghelardini P
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():591-598. PubMed ID: 10746762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposable Phage Mu.
    Harshey RM
    Microbiol Spectr; 2014 Oct; 2(5):. PubMed ID: 26104374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predominant integration end products of infecting bacteriophage Mu DNA are simple insertions with no preference for integration of either Mu DNA strand.
    Chaconas G; Kennedy DL; Evans D
    Virology; 1983 Jul; 128(1):48-59. PubMed ID: 6308898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Escherichia coli FIS protein in maintenance of bacteriophage mu lysogeny by the repressor: control of early transcription and inhibition of transposition.
    Bétermier M; Poquet I; Alazard R; Chandler M
    J Bacteriol; 1993 Jun; 175(12):3798-811. PubMed ID: 8389742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predominant end-products of prophage Mu DNA transposition during the lytic cycle are replicon fusions.
    Chaconas G; Harshey RM; Sarvetnick N; Bukhari AI
    J Mol Biol; 1981 Aug; 150(3):341-59. PubMed ID: 6271975
    [No Abstract]   [Full Text] [Related]  

  • 20. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site.
    Watson MA; Chaconas G
    Cell; 1996 May; 85(3):435-45. PubMed ID: 8616898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.