BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8930921)

  • 1. The N-terminal beta-barrel domain of the Escherichia coli K88 periplasmic chaperone FaeE determines fimbrial subunit recognition and dimerization.
    Mol O; Oudhuis WC; Fokkema H; Oudega B
    Mol Microbiol; 1996 Oct; 22(2):379-88. PubMed ID: 8930921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli.
    Bakker D; Vader CE; Roosendaal B; Mooi FR; Oudega B; de Graaf FK
    Mol Microbiol; 1991 Apr; 5(4):875-86. PubMed ID: 1713284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli K99 periplasmic chaperone FanE is a monomeric protein.
    Mol O; Fokkema H; Oudega B
    FEMS Microbiol Lett; 1996 May; 138(2-3):185-9. PubMed ID: 9026444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli periplasmic chaperone FaeE is a homodimer and the chaperone-K88 subunit complex is a heterotrimer.
    Mol O; Visschers RW; de Graff FK; Oudega B
    Mol Microbiol; 1994 Jan; 11(2):391-402. PubMed ID: 8170401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of K88 fimbriae in Escherichia coli: interaction of tip-subunit FaeC with the periplasmic chaperone FaeE and the outer membrane usher FaeD.
    Mol O; Oudhuis WC; Oud RP; Sijbrandi R; Luirink J; Harms N; Oudega B
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):135-42. PubMed ID: 11200226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Escherichia coli K88 periplasmic chaperone FaeE forms a heterotrimeric complex with the minor fimbrial component FaeH and with the minor fimbrial component FaeI.
    Mol O; Oud RP; de Graaf FK; Oudega B
    Microb Pathog; 1995 Feb; 18(2):115-28. PubMed ID: 7643741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces.
    Van Molle I; Moonens K; Buts L; Garcia-Pino A; Panjikar S; Wyns L; De Greve H; Bouckaert J
    Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):411-20. PubMed ID: 19390146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of minor fimbrial subunits involved in biosynthesis of K88 fimbriae.
    Bakker D; Willemsen PT; Willems RH; Huisman TT; Mooi FR; Oudega B; Stegehuis F; de Graaf FK
    J Bacteriol; 1992 Oct; 174(20):6350-8. PubMed ID: 1400188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae.
    Bakker D; Willemsen PT; Simons LH; van Zijderveld FG; de Graaf FK
    Mol Microbiol; 1992 Jan; 6(2):247-55. PubMed ID: 1372075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli.
    Mol O; Oudega B
    FEMS Microbiol Rev; 1996 Oct; 19(1):25-52. PubMed ID: 8916554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae.
    Van Molle I; Buts L; Coppens F; Qiang L; Wyns L; Loris R; Bouckaert J; De Greve H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Apr; 61(Pt 4):427-31. PubMed ID: 16511060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of chaperone function and pilus biogenesis.
    Sauer FG; Fütterer K; Pinkner JS; Dodson KW; Hultgren SJ; Waksman G
    Science; 1999 Aug; 285(5430):1058-61. PubMed ID: 10446050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.
    Ng TW; Akman L; Osisami M; Thanassi DG
    J Bacteriol; 2004 Aug; 186(16):5321-31. PubMed ID: 15292133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD.
    Du M; Yuan Z; Yu H; Henderson N; Sarowar S; Zhao G; Werneburg GT; Thanassi DG; Li H
    Nature; 2018 Oct; 562(7727):444-447. PubMed ID: 30283140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers.
    Van Molle I; Joensuu JJ; Buts L; Panjikar S; Kotiaho M; Bouckaert J; Wyns L; Niklander-Teeri V; De Greve H
    J Mol Biol; 2007 May; 368(3):791-9. PubMed ID: 17368480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dissection of PapD interaction with PapG reveals two chaperone-binding sites.
    Xu Z; Jones CH; Haslam D; Pinkner JS; Dodson K; Kihlberg J; Hultgren SJ
    Mol Microbiol; 1995 Jun; 16(5):1011-20. PubMed ID: 7476177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis.
    Thanassi DG; Stathopoulos C; Dodson K; Geiger D; Hultgren SJ
    J Bacteriol; 2002 Nov; 184(22):6260-9. PubMed ID: 12399496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of chromosomal mTn 10 insertion mutations affecting K88 fimbriae production in Escherichia coli.
    Huisman TT; Pilipcinec E; Remkes F; Maaskant J; de Graaf FK; Oudega B
    Microb Pathog; 1996 Feb; 20(2):101-8. PubMed ID: 8722098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of FimC, a periplasmic assembly factor for biogenesis of type 1 pili in Escherichia coli.
    Hermanns U; Sebbel P; Eggli V; Glockshuber R
    Biochemistry; 2000 Sep; 39(38):11564-70. PubMed ID: 10995223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The penultimate tyrosine residue of the K99 fibrillar subunit is essential for stability of the protein and its interaction with the periplasmic carrier protein.
    Simons BL; Rathman P; Malij CR; Oudega B; de Graaf FK
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):107-12. PubMed ID: 1970318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.