These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 8930921)
1. The N-terminal beta-barrel domain of the Escherichia coli K88 periplasmic chaperone FaeE determines fimbrial subunit recognition and dimerization. Mol O; Oudhuis WC; Fokkema H; Oudega B Mol Microbiol; 1996 Oct; 22(2):379-88. PubMed ID: 8930921 [TBL] [Abstract][Full Text] [Related]
2. Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli. Bakker D; Vader CE; Roosendaal B; Mooi FR; Oudega B; de Graaf FK Mol Microbiol; 1991 Apr; 5(4):875-86. PubMed ID: 1713284 [TBL] [Abstract][Full Text] [Related]
3. The Escherichia coli K99 periplasmic chaperone FanE is a monomeric protein. Mol O; Fokkema H; Oudega B FEMS Microbiol Lett; 1996 May; 138(2-3):185-9. PubMed ID: 9026444 [TBL] [Abstract][Full Text] [Related]
4. Escherichia coli periplasmic chaperone FaeE is a homodimer and the chaperone-K88 subunit complex is a heterotrimer. Mol O; Visschers RW; de Graff FK; Oudega B Mol Microbiol; 1994 Jan; 11(2):391-402. PubMed ID: 8170401 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of K88 fimbriae in Escherichia coli: interaction of tip-subunit FaeC with the periplasmic chaperone FaeE and the outer membrane usher FaeD. Mol O; Oudhuis WC; Oud RP; Sijbrandi R; Luirink J; Harms N; Oudega B J Mol Microbiol Biotechnol; 2001 Jan; 3(1):135-42. PubMed ID: 11200226 [TBL] [Abstract][Full Text] [Related]
6. The Escherichia coli K88 periplasmic chaperone FaeE forms a heterotrimeric complex with the minor fimbrial component FaeH and with the minor fimbrial component FaeI. Mol O; Oud RP; de Graaf FK; Oudega B Microb Pathog; 1995 Feb; 18(2):115-28. PubMed ID: 7643741 [TBL] [Abstract][Full Text] [Related]
7. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces. Van Molle I; Moonens K; Buts L; Garcia-Pino A; Panjikar S; Wyns L; De Greve H; Bouckaert J Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):411-20. PubMed ID: 19390146 [TBL] [Abstract][Full Text] [Related]
8. Identification of minor fimbrial subunits involved in biosynthesis of K88 fimbriae. Bakker D; Willemsen PT; Willems RH; Huisman TT; Mooi FR; Oudega B; Stegehuis F; de Graaf FK J Bacteriol; 1992 Oct; 174(20):6350-8. PubMed ID: 1400188 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Bakker D; Willemsen PT; Simons LH; van Zijderveld FG; de Graaf FK Mol Microbiol; 1992 Jan; 6(2):247-55. PubMed ID: 1372075 [TBL] [Abstract][Full Text] [Related]
10. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. Mol O; Oudega B FEMS Microbiol Rev; 1996 Oct; 19(1):25-52. PubMed ID: 8916554 [TBL] [Abstract][Full Text] [Related]
11. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae. Van Molle I; Buts L; Coppens F; Qiang L; Wyns L; Loris R; Bouckaert J; De Greve H Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Apr; 61(Pt 4):427-31. PubMed ID: 16511060 [TBL] [Abstract][Full Text] [Related]
12. Structural basis of chaperone function and pilus biogenesis. Sauer FG; Fütterer K; Pinkner JS; Dodson KW; Hultgren SJ; Waksman G Science; 1999 Aug; 285(5430):1058-61. PubMed ID: 10446050 [TBL] [Abstract][Full Text] [Related]
13. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. Ng TW; Akman L; Osisami M; Thanassi DG J Bacteriol; 2004 Aug; 186(16):5321-31. PubMed ID: 15292133 [TBL] [Abstract][Full Text] [Related]
14. Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Du M; Yuan Z; Yu H; Henderson N; Sarowar S; Zhao G; Werneburg GT; Thanassi DG; Li H Nature; 2018 Oct; 562(7727):444-447. PubMed ID: 30283140 [TBL] [Abstract][Full Text] [Related]
15. Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers. Van Molle I; Joensuu JJ; Buts L; Panjikar S; Kotiaho M; Bouckaert J; Wyns L; Niklander-Teeri V; De Greve H J Mol Biol; 2007 May; 368(3):791-9. PubMed ID: 17368480 [TBL] [Abstract][Full Text] [Related]
16. Molecular dissection of PapD interaction with PapG reveals two chaperone-binding sites. Xu Z; Jones CH; Haslam D; Pinkner JS; Dodson K; Kihlberg J; Hultgren SJ Mol Microbiol; 1995 Jun; 16(5):1011-20. PubMed ID: 7476177 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of chromosomal mTn 10 insertion mutations affecting K88 fimbriae production in Escherichia coli. Huisman TT; Pilipcinec E; Remkes F; Maaskant J; de Graaf FK; Oudega B Microb Pathog; 1996 Feb; 20(2):101-8. PubMed ID: 8722098 [TBL] [Abstract][Full Text] [Related]
19. Characterization of FimC, a periplasmic assembly factor for biogenesis of type 1 pili in Escherichia coli. Hermanns U; Sebbel P; Eggli V; Glockshuber R Biochemistry; 2000 Sep; 39(38):11564-70. PubMed ID: 10995223 [TBL] [Abstract][Full Text] [Related]
20. The penultimate tyrosine residue of the K99 fibrillar subunit is essential for stability of the protein and its interaction with the periplasmic carrier protein. Simons BL; Rathman P; Malij CR; Oudega B; de Graaf FK FEMS Microbiol Lett; 1990 Jan; 55(1-2):107-12. PubMed ID: 1970318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]