These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8931144)

  • 1. Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases.
    Welfle K; Misselwitz R; Politz O; Borriss R; Welfle H
    Protein Sci; 1996 Nov; 5(11):2255-65. PubMed ID: 8931144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcalorimetric determination of the thermostability of three hybrid (1-3,1-4)-beta-glucanases.
    Welfle K; Misselwitz R; Welfle H; Simon O; Politz O; Borriss R
    J Biomol Struct Dyn; 1994 Jun; 11(6):1417-24. PubMed ID: 7946082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Ca2+ on conformation and stability of three bacterial hybrid glucanases.
    Welfle K; Misselwitz R; Welfle H; Politz O; Borriss R
    Eur J Biochem; 1995 May; 229(3):726-35. PubMed ID: 7758469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast.
    Meldgaard M; Svendsen I
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():159-66. PubMed ID: 8162185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants for the enhanced thermostability of hybrid (1-3,1-4)-beta-glucanases.
    Politz O; Simon O; Olsen O; Borriss R
    Eur J Biochem; 1993 Sep; 216(3):829-34. PubMed ID: 8404902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural stability and unfolding properties of thermostable bacterial alpha-amylases: a comparative study of homologous enzymes.
    Fitter J; Haber-Pohlmeier S
    Biochemistry; 2004 Aug; 43(30):9589-99. PubMed ID: 15274613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation binding to a Bacillus (1,3-1,4)-beta-glucanase. Geometry, affinity and effect on protein stability.
    Keitel T; Meldgaard M; Heinemann U
    Eur J Biochem; 1994 May; 222(1):203-14. PubMed ID: 8200344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid bacillus endo-(1-3,1-4)-beta-glucanases: construction of recombinant genes and molecular properties of the gene products.
    Borriss R; Olsen O; Thomsen KK; von Wettstein D
    Carlsberg Res Commun; 1989; 54(2):41-54. PubMed ID: 2673278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of thermostability in bacterial 1,3-1,4-β-glucanases through spatial compartmentalization of mutational hotspots.
    Niu C; Zhu L; Xu X; Li Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1085-1097. PubMed ID: 27645297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant barley (1-->3,1-->4)-beta-glucan endohydrolases with enhanced thermostability.
    Stewart RJ; Varghese JN; Garrett TP; Høj PB; Fincher GB
    Protein Eng; 2001 Apr; 14(4):245-53. PubMed ID: 11391016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostable enzymes by construction of hybrid genes.
    Olsen O; Borriss R; Simon O; Thomsen KK
    Mol Gen Genet; 1991 Feb; 225(2):177-85. PubMed ID: 2005860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures and properties of de novo circularly permuted 1,3-1,4-beta-glucanases.
    Aÿ J; Hahn M; Decanniere K; Piotukh K; Borriss R; Heinemann U
    Proteins; 1998 Feb; 30(2):155-67. PubMed ID: 9489923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of a homo-dimeric Ca(2+)-binding member of the beta gamma-crystallin superfamily: DSC measurements on spherulin 3a from Physarum polycephalum.
    Kretschmar M; Jaenicke R
    J Mol Biol; 1999 Sep; 291(5):1147-53. PubMed ID: 10518950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational initiation factor IF2 from Bacillus stearothermophilus: a spectroscopic and microcalorimetric study of the C-domain.
    Misselwitz R; Welfe K; Krafft C; Gualerzi CO; Welfle H
    Biochemistry; 1997 Mar; 36(11):3170-8. PubMed ID: 9115993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium triggers the refolding of Bacillus subtilis chitosanase.
    Colomer-Pallas A; Pereira Y; Petit-Glatron MF; Chambert R
    Biochem J; 2003 Feb; 369(Pt 3):731-8. PubMed ID: 12401130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding of the N-terminal RNA binding domain of the human U1A protein studied by differential scanning calorimetry.
    Lu J; Hall KB
    Biophys Chem; 1997 Feb; 64(1-3):111-9. PubMed ID: 9127942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational stability of factor VIIa: biophysical studies of thermal and guanidine hydrochloride-induced denaturation.
    Freskgârd PO; Petersen LC; Gabriel DA; Li X; Persson E
    Biochemistry; 1998 May; 37(20):7203-12. PubMed ID: 9585532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of a disulfide bridge to the stability of 1,3-1,4-beta-D-glucan 4-glucanohydrolase from Bacillus licheniformis.
    Pons J; Planas A; Querol E
    Protein Eng; 1995 Sep; 8(9):939-45. PubMed ID: 8746732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase.
    Chen B; King J
    Biochemistry; 1991 Jun; 30(25):6260-9. PubMed ID: 2059632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.