BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8931147)

  • 1. Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel.
    Ben-Efraim I; Shai Y
    Protein Sci; 1996 Nov; 5(11):2287-97. PubMed ID: 8931147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes.
    Ben-Efraim I; Shai Y
    Biophys J; 1997 Jan; 72(1):85-96. PubMed ID: 8994595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic S-2 and H-5 segments of the Shaker K+ channel: secondary structure, membrane interaction, and assembly within phospholipid membranes.
    Peled H; Shai Y
    Biochemistry; 1994 Jun; 33(23):7211-9. PubMed ID: 8003486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane interaction and self-assembly within phospholipid membranes of synthetic segments corresponding to the H-5 region of the shaker K+ channel.
    Peled H; Shai Y
    Biochemistry; 1993 Aug; 32(31):7879-85. PubMed ID: 8347593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes.
    Pouny Y; Shai Y
    Biochemistry; 1995 Jun; 34(23):7712-21. PubMed ID: 7779818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1.
    Brazier SP; Ramesh B; Haris PI; Lee DC; Srai SK
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):375-80. PubMed ID: 9761737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes.
    Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y
    Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin.
    Gazit E; Shai Y
    Biochemistry; 1993 Nov; 32(46):12363-71. PubMed ID: 8241124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structure and membrane localization of synthetic segments and a truncated form of the IsK (minK) protein.
    Ben-Efraim I; Strahilevitz J; Bach D; Shai Y
    Biochemistry; 1994 Jun; 33(22):6966-73. PubMed ID: 8204631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and functional characterization of the putative transmembrane segment of the minK potassium channel.
    Ben-Efraim I; Bach D; Shai Y
    Biochemistry; 1993 Mar; 32(9):2371-7. PubMed ID: 8443177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic putative transmembrane region of minimal potassium channel protein (minK) adopts an alpha-helical conformation in phospholipid membranes.
    Mercer EA; Abbott GW; Brazier SP; Ramesh B; Haris PI; Srai SK
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):475-9. PubMed ID: 9230130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The assembly and organization of the alpha 5 and alpha 7 helices from the pore-forming domain of Bacillus thuringiensis delta-endotoxin. Relevance to a functional model.
    Gazit E; Shai Y
    J Biol Chem; 1995 Feb; 270(6):2571-8. PubMed ID: 7852320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study.
    Gazit E; Lee WJ; Brey PT; Shai Y
    Biochemistry; 1994 Sep; 33(35):10681-92. PubMed ID: 8075068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes.
    Rapaport D; Shai Y
    J Biol Chem; 1994 May; 269(21):15124-31. PubMed ID: 8195149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.
    Yano H; Philipson LH; Kugler JL; Tokuyama Y; Davis EM; Le Beau MM; Nelson DJ; Bell GI; Takeda J
    Mol Pharmacol; 1994 May; 45(5):854-60. PubMed ID: 8190102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-forming peptides induce rapid phospholipid flip-flop in membranes.
    Fattal E; Nir S; Parente RA; Szoka FC
    Biochemistry; 1994 May; 33(21):6721-31. PubMed ID: 8204607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic helical propensities and stable secondary structure in a membrane-bound fragment (S4) of the shaker potassium channel.
    Halsall A; Dempsey CE
    J Mol Biol; 1999 Nov; 293(4):901-15. PubMed ID: 10543975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
    Schwalbe RA; Bianchi L; Brown AM
    J Biol Chem; 1997 Oct; 272(40):25217-23. PubMed ID: 9312136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.