These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8931543)
21. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
23. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. Anderson BF; Baker HM; Norris GE; Rice DW; Baker EN J Mol Biol; 1989 Oct; 209(4):711-34. PubMed ID: 2585506 [TBL] [Abstract][Full Text] [Related]
24. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR. D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional structure of a new form of mare lactoferrin in 70% PEG 400 at 3.8 A resolution. Kumar S; Sharma AK; Paramasivam M; Srinivasan A; Singh TP Indian J Biochem Biophys; 2001 Jun; 38(3):135-41. PubMed ID: 11693374 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure and iron-binding properties of the R210K mutant of the N-lobe of human lactoferrin: implications for iron release from transferrins. Peterson NA; Anderson BF; Jameson GB; Tweedie JW; Baker EN Biochemistry; 2000 Jun; 39(22):6625-33. PubMed ID: 10828980 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of a complex formed between proteolytically-generated lactoferrin fragment and proteinase K. Singh TP; Sharma S; Karthikeyan S; Betzel C; Bhatia KL Proteins; 1998 Oct; 33(1):30-8. PubMed ID: 9741842 [TBL] [Abstract][Full Text] [Related]
28. Structures of two mutants that probe the role in iron release of the dilysine pair in the N-lobe of human transferrin. Baker HM; Nurizzo D; Mason AB; Baker EN Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):408-14. PubMed ID: 17327678 [TBL] [Abstract][Full Text] [Related]
29. Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 a resolution. Khan JA; Kumar P; Srinivasan A; Singh TP J Biol Chem; 2001 Sep; 276(39):36817-23. PubMed ID: 11473113 [TBL] [Abstract][Full Text] [Related]
30. Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Lambert LA; Perri H; Halbrooks PJ; Mason AB Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):129-41. PubMed ID: 16111909 [TBL] [Abstract][Full Text] [Related]
31. Synergism and substitution in the lactoferrins. Brodie AM; Ainscough EW; Baker EN; Baker HM; Shongwe MS; Smith CA Adv Exp Med Biol; 1994; 357():33-44. PubMed ID: 7762444 [TBL] [Abstract][Full Text] [Related]
32. The impact of Lys-->Arg surface mutations on the crystallization of the globular domain of RhoGDI. Czepas J; Devedjiev Y; Krowarsch D; Derewenda U; Otlewski J; Derewenda ZS Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):275-80. PubMed ID: 14747703 [TBL] [Abstract][Full Text] [Related]
33. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
34. Domain closure mechanism in transferrins: new viewpoints about the hinge structure and motion as deduced from high resolution crystal structures of ovotransferrin N-lobe. Mizutani K; Mikami B; Hirose M J Mol Biol; 2001 Jun; 309(4):937-47. PubMed ID: 11399070 [TBL] [Abstract][Full Text] [Related]
36. On the molecular-replacement problem in the presence of merohedral twinning: structure of the N-terminal half-molecule of human lactoferrin. Breyer WA; Kingston RL; Anderson BF; Baker EN Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):129-38. PubMed ID: 10089403 [TBL] [Abstract][Full Text] [Related]
37. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Romier C; Reuter K; Suck D; Ficner R Biochemistry; 1996 Dec; 35(49):15734-9. PubMed ID: 8961936 [TBL] [Abstract][Full Text] [Related]
38. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin. Andersen OA; Flatmark T; Hough E J Mol Biol; 2001 Nov; 314(2):279-91. PubMed ID: 11718561 [TBL] [Abstract][Full Text] [Related]
39. The conserved methionine residue of the metzincins: a site-directed mutagenesis study. Hege T; Baumann U J Mol Biol; 2001 Nov; 314(2):181-6. PubMed ID: 11718552 [TBL] [Abstract][Full Text] [Related]
40. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release. Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]