BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8932362)

  • 1. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand.
    Cassidy SA; Strekowski L; Fox KR
    Nucleic Acids Res; 1996 Nov; 24(21):4133-8. PubMed ID: 8932362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides.
    Washbrook E; Fox KR
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):569-75. PubMed ID: 8043005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides.
    Cassidy SA; Strekowski L; Wilson WD; Fox KR
    Biochemistry; 1994 Dec; 33(51):15338-47. PubMed ID: 7803397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets.
    Keppler MD; Fox KR
    Nucleic Acids Res; 1997 Nov; 25(22):4644-9. PubMed ID: 9358177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilisation of TG- and AG-containing antiparallel DNA triplexes by triplex-binding ligands.
    Keppler MD; Neidle S; Fox KR
    Nucleic Acids Res; 2001 May; 29(9):1935-42. PubMed ID: 11328877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes.
    Riechert-Krause F; Autenrieth K; Eick A; Weisz K
    Biochemistry; 2013 Jan; 52(1):41-52. PubMed ID: 23234257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of antiparallel DNA triple helix formation.
    Chandler SP; Fox KR
    Biochemistry; 1996 Nov; 35(47):15038-48. PubMed ID: 8942670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA triple helix stabilisation by a naphthylquinoline dimer.
    Keppler M; Zegrocka O; Strekowski L; Fox KR
    FEBS Lett; 1999 Mar; 447(2-3):223-6. PubMed ID: 10214950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA triple helix stabilisation by covalent attachment of a triplex-specific ligand.
    Keppler MD; McKeen CM; Zegrocka O; Strekowski L; Brown T; Fox KR
    Biochim Biophys Acta; 1999 Oct; 1447(2-3):137-45. PubMed ID: 10542311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplex-forming twisted intercalating nucleic acids (TINAs): design rules, stabilization of antiparallel DNA triplexes and inhibition of G-quartet-dependent self-association.
    Doluca O; Boutorine AS; Filichev VV
    Chembiochem; 2011 Oct; 12(15):2365-74. PubMed ID: 23106083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides.
    Fox KR
    Nucleic Acids Res; 1994 Jun; 22(11):2016-21. PubMed ID: 8029007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced formation of triple helices with antiparallel third strands containing G and T.
    Escudé C; Sun JS; Nguyen CH; Bisagni E; Garestier T; Hélène C
    Biochemistry; 1996 May; 35(18):5735-40. PubMed ID: 8639533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
    Lacoste J; François JC; Hélène C
    Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies on ethidium bromide binding to intramolecular parallel and antiparallel triple helices containing T*A:T and G*G:C triplets.
    Gondeau C; Maurizot JC; Durand M
    J Biomol Struct Dyn; 2000 Apr; 17(5):879-86. PubMed ID: 10798532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines.
    Gowers DM; Fox KR
    Nucleic Acids Res; 1997 Oct; 25(19):3787-94. PubMed ID: 9380499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequence specificity of triplex-binding ligands.
    Keppler MD; James PL; Neidle S; Brown T; Fox KR
    Eur J Biochem; 2003 Dec; 270(24):4982-92. PubMed ID: 14653824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.