BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8932382)

  • 1. Frequent oligonucleotides and peptides of the Haemophilus influenzae genome.
    Karlin S; Mrázek J; Campbell AM
    Nucleic Acids Res; 1996 Nov; 24(21):4263-72. PubMed ID: 8932382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae.
    Bakkali M; Chen TY; Lee HC; Redfield RJ
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4513-8. PubMed ID: 15070749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compositional biases of bacterial genomes and evolutionary implications.
    Karlin S; Mrázek J; Campbell AM
    J Bacteriol; 1997 Jun; 179(12):3899-913. PubMed ID: 9190805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site.
    Sourice S; Biaudet V; El Karoui M; Ehrlich SD; Gruss A
    Mol Microbiol; 1998 Mar; 27(5):1021-9. PubMed ID: 9535091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome.
    Smith HO; Tomb JF; Dougherty BA; Fleischmann RD; Venter JC
    Science; 1995 Jul; 269(5223):538-40. PubMed ID: 7542802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O-acetyl groups.
    Fox KL; Yildirim HH; Deadman ME; Schweda EK; Moxon ER; Hood DW
    Mol Microbiol; 2005 Oct; 58(1):207-16. PubMed ID: 16164559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of competence and DNA uptake specificity in the Pasteurellaceae.
    Redfield RJ; Findlay WA; Bossé J; Kroll JS; Cameron AD; Nash JH
    BMC Evol Biol; 2006 Oct; 6():82. PubMed ID: 17038178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.
    Bakkali M
    PLoS One; 2007 Aug; 2(8):e741. PubMed ID: 17710141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli.
    Tatusov RL; Mushegian AR; Bork P; Brown NP; Hayes WS; Borodovsky M; Rudd KE; Koonin EV
    Curr Biol; 1996 Mar; 6(3):279-91. PubMed ID: 8805245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repeats identify novel virulence genes in Haemophilus influenzae.
    Hood DW; Deadman ME; Jennings MP; Bisercic M; Fleischmann RD; Venter JC; Moxon ER
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):11121-5. PubMed ID: 8855319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA uptake signal sequences in naturally transformable bacteria.
    Smith HO; Gwinn ML; Salzberg SL
    Res Microbiol; 1999; 150(9-10):603-16. PubMed ID: 10673000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple sequence repeats in Haemophilus influenzae.
    Power PM; Sweetman WA; Gallacher NJ; Woodhall MR; Kumar GA; Moxon ER; Hood DW
    Infect Genet Evol; 2009 Mar; 9(2):216-28. PubMed ID: 19095084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the Haemophilus influenzae uvr-1+ gene: homology with other uvrC-like genes and characterization of the Haemophilus influenzae uvr-1 and uvr-2 mutations.
    Gottschalk VA; Stuy JH
    SAAS Bull Biochem Biotechnol; 1997; 10():49-58. PubMed ID: 9274062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Chi distribution on different bacterial genomes.
    El Karoui M; Biaudet V; Schbath S; Gruss A
    Res Microbiol; 1999; 150(9-10):579-87. PubMed ID: 10672998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of the SOS regulon of Haemophilus influenzae does not affect phase variation rates at tetranucleotide or dinucleotide repeats.
    Sweetman WA; Moxon ER; Bayliss CD
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2751-2763. PubMed ID: 16079351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary relationships between the two bacteria Escherichia coli and Haemophilus influenzae and their putative last common ancestor.
    de Rosa R; Labedan B
    Mol Biol Evol; 1998 Jan; 15(1):17-27. PubMed ID: 9491601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, and functional analysis of the TyrR protein of Haemophilus influenzae.
    Zhu Q; Zhao S; Somerville RL
    Protein Expr Purif; 1997 Jul; 10(2):237-46. PubMed ID: 9226720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases.
    De Bolle X; Bayliss CD; Field D; van de Ven T; Saunders NJ; Hood DW; Moxon ER
    Mol Microbiol; 2000 Jan; 35(1):211-22. PubMed ID: 10632891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A whole genome shotgun gene fusion method for isolation of translation initiation sites in Escherichia coli: identification of Haemophilus influenzae translation initiation sites in E. coli.
    McKenney K; Tian J; Nunes-Duby S; Hoskins J; Reddy P
    Microb Comp Genomics; 1997; 2(2):113-21. PubMed ID: 9689220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd.
    Chandler MS
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1626-30. PubMed ID: 1542653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.