These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 8932436)
1. Temperature and pH-sensitive polymers for human calcitonin delivery. Serres A; Baudys M; Kim SW Pharm Res; 1996 Feb; 13(2):196-201. PubMed ID: 8932436 [TBL] [Abstract][Full Text] [Related]
2. Effect of molecular weight and polydispersity on kinetics of dissolution and release from ph/temperature-sensitive polymers. Ramkissoon-Ganorkar C; Liu F; Baudys M; Kim SW J Biomater Sci Polym Ed; 1999; 10(10):1149-61. PubMed ID: 10591137 [TBL] [Abstract][Full Text] [Related]
3. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. Ramkissoon-Ganorkar C; Liu F; Baudys M; Kim SW J Control Release; 1999 Jun; 59(3):287-98. PubMed ID: 10332061 [TBL] [Abstract][Full Text] [Related]
4. Polymer molecular weight alters properties of pH-/temperature-sensitive polymeric beads. Ramkissoon-Ganorkar C; Gutowska A; Liu F; Baudys M; Kim SW Pharm Res; 1999 Jun; 16(6):819-27. PubMed ID: 10397600 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of thermosensitive and pH-sensitive poly (N-isopropylacrylamide-acrylamide-vinylpyrrolidone) for use in controlled release of naltrexone. Salehi R; Arsalani N; Davaran S; Entezami AA J Biomed Mater Res A; 2009 Jun; 89(4):919-28. PubMed ID: 18465827 [TBL] [Abstract][Full Text] [Related]
6. Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. Ramkissoon-Ganorkar C; Baudys M; Kim SW J Biomater Sci Polym Ed; 2000; 11(1):45-54. PubMed ID: 10680607 [TBL] [Abstract][Full Text] [Related]
7. Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). Abu Samah NH; Heard CM Int J Pharm; 2013 Sep; 453(2):630-40. PubMed ID: 23727139 [TBL] [Abstract][Full Text] [Related]
8. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release. Chen H; Gu Y; Hub Y; Qian Z PDA J Pharm Sci Technol; 2007; 61(4):303-13. PubMed ID: 17933211 [TBL] [Abstract][Full Text] [Related]
9. Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Işıklan N; Küçükbalcı G Eur J Pharm Biopharm; 2012 Oct; 82(2):316-31. PubMed ID: 22906708 [TBL] [Abstract][Full Text] [Related]
10. Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. Vakkalanka SK; Brazel CS; Peppas NA J Biomater Sci Polym Ed; 1996; 8(2):119-29. PubMed ID: 8957708 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles. Khan A J Colloid Interface Sci; 2007 Sep; 313(2):697-704. PubMed ID: 17561067 [TBL] [Abstract][Full Text] [Related]
12. Characterization of calcitonin-containing liposome formulations for intranasal delivery. Law SL; Shih CL J Microencapsul; 2001; 18(2):211-21. PubMed ID: 11253938 [TBL] [Abstract][Full Text] [Related]
13. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Liu SQ; Tong YW; Yang YY Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542 [TBL] [Abstract][Full Text] [Related]
14. The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Liu XM; Wang LS; Wang L; Huang J; He C Biomaterials; 2004 Nov; 25(25):5659-66. PubMed ID: 15159082 [TBL] [Abstract][Full Text] [Related]
15. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients. Widanapathirana L; Tale S; Reineke TM Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484 [TBL] [Abstract][Full Text] [Related]
16. Prediction of lower critical solution temperature of N-isopropylacrylamide-acrylic acid copolymer by an artificial neural network model. Kayi H; Tuncel SA; Elkamel A; Alper E J Mol Model; 2005 Feb; 11(1):55-60. PubMed ID: 15592689 [TBL] [Abstract][Full Text] [Related]
17. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. Ch'ng HS; Park H; Kelly P; Robinson JR J Pharm Sci; 1985 Apr; 74(4):399-405. PubMed ID: 3998999 [TBL] [Abstract][Full Text] [Related]
18. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. Kim S; Chung EH; Gilbert M; Healy KE J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. Zeinali E; Haddadi-Asl V; Roghani-Mamaqani H J Biomed Mater Res A; 2018 Jan; 106(1):231-243. PubMed ID: 28891247 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of poly(N-vinylcaprolactam)-based spray-dried microparticles exhibiting temperature and pH-sensitive properties for controlled release of ketoprofen. Medeiros SF; Lopes MV; Rossi-Bergmann B; Ré MI; Santos AM Drug Dev Ind Pharm; 2017 Sep; 43(9):1519-1529. PubMed ID: 28436310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]