BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8932438)

  • 1. Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation.
    Constantinides PP; Welzel G; Ellens H; Smith PL; Sturgis S; Yiv SH; Owen AB
    Pharm Res; 1996 Feb; 13(2):210-5. PubMed ID: 8932438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides.
    Constantinides PP; Scalart JP; Lancaster C; Marcello J; Marks G; Ellens H; Smith PL
    Pharm Res; 1994 Oct; 11(10):1385-90. PubMed ID: 7855039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development.
    Prajapati HN; Dalrymple DM; Serajuddin AT
    Pharm Res; 2012 Jan; 29(1):285-305. PubMed ID: 21861203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.
    Koga K; Takarada N; Takada K
    Eur J Pharm Biopharm; 2010 Feb; 74(2):223-32. PubMed ID: 19755156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds.
    Araya H; Tomita M; Hayashi M
    Int J Pharm; 2005 Nov; 305(1-2):61-74. PubMed ID: 16219433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labrasol
    Heade J; Maher S; Bleiel SB; Brayden DJ
    J Pharm Sci; 2018 Jun; 107(6):1648-1655. PubMed ID: 29462634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Screening of Panax notoginsenoside water in oil microemulsion formulations and their evaluation in vitro and in vivo].
    Han M; Fu S; Fang XL
    Yao Xue Xue Bao; 2007 Jul; 42(7):780-6. PubMed ID: 17882965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution.
    Li Y; Song J; Tian N; Cai J; Huang M; Xing Q; Wang Y; Wu C; Hu H
    Int J Pharm; 2014 Oct; 473(1-2):316-25. PubMed ID: 25014370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.
    Chen Y; Tuo J; Huang H; Liu D; You X; Mai J; Song J; Xie Y; Wu C; Hu H
    Int J Pharm; 2015 Jun; 487(1-2):17-24. PubMed ID: 25841571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length.
    Roohinejad S; Oey I; Wen J; Lee SJ; Everett DW; Burritt DJ
    Food Chem; 2015 May; 174():270-8. PubMed ID: 25529680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme.
    Cheng MB; Wang JC; Li YH; Liu XY; Zhang X; Chen DW; Zhou SF; Zhang Q
    J Control Release; 2008 Jul; 129(1):41-8. PubMed ID: 18474405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.
    James-Smith MA; Shekhawat D; Cheung S; Moudgil BM; Shah DO
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):5-10. PubMed ID: 18155450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions.
    Fan Y; Li X; Zhou Y; Fan C; Wang X; Huang Y; Liu Y
    Int J Pharm; 2011 Sep; 416(1):323-30. PubMed ID: 21726618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of microemulsion enhancing the oral bioavailability of puerarin: comparison between oil-in-water and water-in-oil microemulsions using the single-pass intestinal perfusion method and a chylomicron flow blocking approach.
    Tang TT; Hu XB; Liao DH; Liu XY; Xiang DX
    Int J Nanomedicine; 2013; 8():4415-26. PubMed ID: 24277986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of absorption enhancement by medium-chain fatty acids in rat large intestine.
    Higaki K; Yata T; Sone M; Ogawara K; Kimura T
    Res Commun Mol Pathol Pharmacol; 2001; 109(3-4):231-40. PubMed ID: 11758652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pluronic microemulsions as nanoreservoirs for extraction of bupivacaine from normal saline.
    Varshney M; Morey TE; Shah DO; Flint JA; Moudgil BM; Seubert CN; Dennis DM
    J Am Chem Soc; 2004 Apr; 126(16):5108-12. PubMed ID: 15099093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.
    Liu Y; Wang L; Zhao Y; He M; Zhang X; Niu M; Feng N
    Int J Pharm; 2014 Dec; 476(1-2):169-77. PubMed ID: 25280882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.