These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 893439)

  • 1. An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes.
    Bernert JT; Sprecher H
    J Biol Chem; 1977 Oct; 252(19):6736-44. PubMed ID: 893439
    [No Abstract]   [Full Text] [Related]  

  • 2. Properties of malonyl-CoA decarboxylase and its relation with malonyl-CoA incorporation into fatty acids by rat liver mitochondria.
    Landriscina C; Gnoni GV; Quagliariello E
    Eur J Biochem; 1971 Apr; 19(4):573-80. PubMed ID: 5578610
    [No Abstract]   [Full Text] [Related]  

  • 3. [2,3-trans-Hexenoyl-CoA-reductase and 2,3-trans-decenoyl-CoA-reductase as components of microsomal, malonyl-CoA-dependent or mitochondrial acetyl CoA dependent chain prolongation of fatty acids].
    Podack ER; Seubert W
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1557. PubMed ID: 4649820
    [No Abstract]   [Full Text] [Related]  

  • 4. [Metabolism of unsaturated fatty acids. V. On the beta-oxidation of mono- and polyene-fatty acids. Mechanism of enzymatic reactions of delta-2-cis-enoyl-CoA compounds].
    Stoffel W; Caesar H
    Hoppe Seylers Z Physiol Chem; 1965; 341(1):76-83. PubMed ID: 5876233
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of fatty acid synthesis in rat-liver microsomes.
    Landriscina C; Gnoni GV; Quagliariello E
    Biochim Biophys Acta; 1970 May; 202(3):405-14. PubMed ID: 5442181
    [No Abstract]   [Full Text] [Related]  

  • 6. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. Characterization of hexenoyl-CoA reductase from liver and adrenal cortex as a constituent of the microsomal chain elongation.
    Podack ER; Lakomek M; Saathoff G; Seubert W
    Eur J Biochem; 1974 Jun; 45(1):13-23. PubMed ID: 4420745
    [No Abstract]   [Full Text] [Related]  

  • 7. [The metabolism of unsaturated fatty acid. 3. On the beta-oxidation of mono- and polyene-fatty acids. The mechanism of the enzymatic reaction on delta-3-cis-enoyl-CoA compounds].
    Stoffel W; Ditzer R; Caesar H
    Hoppe Seylers Z Physiol Chem; 1964; 339(1):167-81. PubMed ID: 5830064
    [No Abstract]   [Full Text] [Related]  

  • 8. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. The malonyl-transfer reaction.
    Podack ER; Saathoff G; Seubert
    Eur J Biochem; 1974 Dec; 50(1):237-43. PubMed ID: 4452359
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of long chain fatty acids by subcellular fractions of rat liver. I. Activation of trans-unsaturated acids.
    Lippel K
    Lipids; 1973 Mar; 8(3):111-8. PubMed ID: 4692877
    [No Abstract]   [Full Text] [Related]  

  • 10. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA.
    Seubert W; Lamberts I; Kramer R; Ohly B
    Biochim Biophys Acta; 1968 Dec; 164(3):498-517. PubMed ID: 4387390
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymatic studies on the mechanism of the retroconversion of C22-polyenoic fatty acids to their C20-homologues.
    Stoffel W; Eker ; Assad H; Sprecher H
    Hoppe Seylers Z Physiol Chem; 1970 Dec; 351(12):1545-54. PubMed ID: 5491611
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of branched and other long-chain fatty acids by rat liver microsomes.
    Lippel K
    J Lipid Res; 1973 Jan; 14(1):102-9. PubMed ID: 4701547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic alterations of fatty acids.
    Fulco AJ
    Annu Rev Biochem; 1974; 43(0):215-41. PubMed ID: 4604757
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms and physiological roles of fatty acid chain elongation in microsomes and mitochondria.
    Seubert W; Podack ER
    Mol Cell Biochem; 1973 May; 1(1):29-40. PubMed ID: 4154399
    [No Abstract]   [Full Text] [Related]  

  • 15. The enzymic conversion of 3cis- and 3ans-alkenoyl-CoA esters into their 2trans-isomers.
    Struijk CB; Beerthuis RK
    Biochim Biophys Acta; 1966 Feb; 116(1):12-22. PubMed ID: 5949609
    [No Abstract]   [Full Text] [Related]  

  • 16. ACYL-CARRIER PROTEIN. II. INTERMEDIARY REACTIONS OF FATTY ACID SYNTHESIS.
    ALBERTS AW; MAJERUS PW; TALAMO B; VAGELOS PR
    Biochemistry; 1964 Oct; 3():1563-71. PubMed ID: 14232033
    [No Abstract]   [Full Text] [Related]  

  • 17. The regulation of fatty acid chain elongation in rat liver microsomes: role of fasting and CoASH.
    Reichelt WH; Grav HJ; Christiansen EN
    Biochim Biophys Acta; 1994 Sep; 1214(2):109-14. PubMed ID: 7918589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of long chain fatty acids by subcellular fractions of rat liver. 3. Effect of ethylenic bond position on acyl-CoA formation of cis-octadecenoates.
    Lippel K; Carpenter D; Gunstone FD; Ismail IA
    Lipids; 1973 Mar; 8(3):124-8. PubMed ID: 4692879
    [No Abstract]   [Full Text] [Related]  

  • 19. Activation of long chain fatty acids by subcellular fractions of rat liver. II. Effect of ethylenic bond position on acyl-CoA formation of trans-octadecenoates.
    Lippel K; Gunstone FD; Barve JA
    Lipids; 1973 Mar; 8(3):119-23. PubMed ID: 4692878
    [No Abstract]   [Full Text] [Related]  

  • 20. Chain shortening of erucic acid by subcellular particles isolated from liver and heart of rat.
    Clouet P; Bezard J
    FEBS Lett; 1978 Sep; 93(1):165-8. PubMed ID: 29784
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.