These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8934464)

  • 1. [Clinical application of functional mapping: the present state of the art and its future prospects: (series 9). Functional brain mapping using dipole tracing].
    Hayashi N; Ikeda H; Takaku A; Nishijo H; Ono T
    No Shinkei Geka; 1996 Nov; 24(11):977-80. PubMed ID: 8934464
    [No Abstract]   [Full Text] [Related]  

  • 2. [Clinical application of functional mapping; the present state of the art and its future prospects: (series 3) functional brain mapping using evoked magnetic fields].
    Nakasato N; Yoshimoto T
    No Shinkei Geka; 1996 Apr; 24(4):305-10. PubMed ID: 8934881
    [No Abstract]   [Full Text] [Related]  

  • 3. [Clinical application of functional mapping; the present state of the art and its future prospects: (series 4) noninvasive functional mapping of the brain with near-infrared spectroscopy].
    Watanabe E
    No Shinkei Geka; 1996 May; 24(5):409-14. PubMed ID: 8692366
    [No Abstract]   [Full Text] [Related]  

  • 4. Elucidation of causal relationships for multi-sourced activities in the human brain by directed transinformation between time series of equivalent dipoles.
    Take N; Kosugi Y
    J Neural Eng; 2004 Mar; 1(1):55-62. PubMed ID: 15876623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Clinical application of functional mapping: the present state of the art and its future prospects: (series 7) magneto-encephalographic study of higher brain function].
    Mikuni N; Nagamine T; Shibasaki H
    No Shinkei Geka; 1996 Aug; 24(8):691-700. PubMed ID: 8741403
    [No Abstract]   [Full Text] [Related]  

  • 6. [Functional brain mapping using evoked potentials and magnetic fields: basic knowledge of clinical nerve physiology for neurosurgeons].
    Nakasato N; Shamoto H; Nakasato N; Kanno A; Ryogo T; Kumabe T; Tominaga T
    No Shinkei Geka; 2003 Sep; 31(9):1030-7. PubMed ID: 14513788
    [No Abstract]   [Full Text] [Related]  

  • 7. Topographic mapping of single sweep evoked potentials in the brain.
    Liberati D; DiCorrado S; Mandelli S
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):943-51. PubMed ID: 1473823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Magnetoencephalography (MEG) and functional brain mapping].
    Nakasato N
    Rinsho Shinkeigaku; 1994 Dec; 34(12):1253-4. PubMed ID: 7774127
    [No Abstract]   [Full Text] [Related]  

  • 9. An automated method for micro-state segmentation of evoked potentials.
    Hennings K; Lelic D; Petrini L
    J Neurosci Methods; 2009 Feb; 177(1):225-31. PubMed ID: 18977245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preoperative functional brain mapping using magnetoencephalography for brain tumors].
    Nakasato N; Kumabe T; Tominaga T
    Nihon Rinsho; 2005 Sep; 63 Suppl 9():228-35. PubMed ID: 16201528
    [No Abstract]   [Full Text] [Related]  

  • 11. Maximum contrast beamformer for electromagnetic mapping of brain activity.
    Chen YS; Cheng CY; Hsieh JC; Chen LF
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1765-74. PubMed ID: 16941832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated neighborhood correlation and hierarchical clustering approach of functional MRI.
    Chen H; Yuan H; Yao D; Chen L; Chen W
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):452-8. PubMed ID: 16532771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Trajectories of shifting of dipole sources of visual evoked potentials over the human brain].
    Mikhaĭlova ES; Zhila AV; Slavutskaia AV; Kulikov MA; Shevelev IA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(6):673-83. PubMed ID: 18592702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akaike causality in state space. Instantaneous causality between visual cortex in fMRI time series.
    Wong KF; Ozaki T
    Biol Cybern; 2007 Aug; 97(2):151-7. PubMed ID: 17579884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency domain simultaneous source and source coherence estimation with an application to MEG.
    Grasman RP; Huizenga HM; Waldorp LJ; Böcker KB; Molenaar PC
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):45-55. PubMed ID: 14723493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEG and EEG source localization in beamspace.
    Rodríguez-Rivera A; Baryshnikov BV; Van Veen BD; Wakai RT
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):430-41. PubMed ID: 16532769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new current dipole tracing method from EEG which is very useful in research of human brain activity in the space station.
    Han XE; Matsunami K; Homma S; Deguchi K; Huda K; Kondou D; Ojika T
    J Gravit Physiol; 2000 Jul; 7(2):P95-6. PubMed ID: 12697556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dipole tracing of visual evoked potentials in human brain].
    Shevelev IA; Mikhaĭlova ES; Kulikov MA; Slavutskaia AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):151-62. PubMed ID: 18661777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delay correlation subspace decomposition algorithm and its application in fMRI.
    Chen H; Yao D; Chen W; Chen L
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1647-51. PubMed ID: 16350921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain mapping of visual evoked activity--topographical and functional components.
    Skrandies W
    Acta Neurol Taiwan; 2005 Dec; 14(4):164-78. PubMed ID: 16425543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.