These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 8934489)
1. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part II: forces in the graft compared with forces in the intact ligament. Markolf KL; Burchfield DM; Shapiro MM; Cha CW; Finerman GA; Slauterbeck JL J Bone Joint Surg Am; 1996 Nov; 78(11):1728-34. PubMed ID: 8934489 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. Markolf KL; Burchfield DM; Shapiro MM; Davis BR; Finerman GA; Slauterbeck JL J Bone Joint Surg Am; 1996 Nov; 78(11):1720-7. PubMed ID: 8934488 [TBL] [Abstract][Full Text] [Related]
3. A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part II: Forces in the graft compared with forces in the intact ligament. Markolf KL; Slauterbeck JR; Armstrong KL; Shapiro MS; Finerman GA J Bone Joint Surg Am; 1997 Mar; 79(3):381-6. PubMed ID: 9070527 [TBL] [Abstract][Full Text] [Related]
4. A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part 1: Isometry, pre-tension of the graft, and anterior-posterior laxity. Markolf KL; Slauterbeck JR; Armstrong KL; Shapiro MS; Finerman GA J Bone Joint Surg Am; 1997 Mar; 79(3):375-80. PubMed ID: 9070526 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of knees with combined cruciate deficiencies: a biomechanical study. Markolf KL; O'Neill G; Jackson SR; McAllister DR J Bone Joint Surg Am; 2003 Sep; 85(9):1768-74. PubMed ID: 12954836 [TBL] [Abstract][Full Text] [Related]
6. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. Markolf KL; Gorek JF; Kabo JM; Shapiro MS J Bone Joint Surg Am; 1990 Apr; 72(4):557-67. PubMed ID: 2324143 [TBL] [Abstract][Full Text] [Related]
7. Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions. Markolf KL; Park S; Jackson SR; McAllister DR J Bone Joint Surg Am; 2009 Jan; 91(1):107-18. PubMed ID: 19122085 [TBL] [Abstract][Full Text] [Related]
8. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. Wascher DC; Markolf KL; Shapiro MS; Finerman GA J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916 [TBL] [Abstract][Full Text] [Related]
9. The effect of anterior cruciate ligament graft rotation on knee laxity and graft tension: An in vitro biomechanical analysis. Hame SL; Markolf KL; Gabayan AJ; Hunter DM; Davis B; Shapiro MS Arthroscopy; 2002 Jan; 18(1):55-60. PubMed ID: 11774142 [TBL] [Abstract][Full Text] [Related]
10. Measurement of stability of the knee and ligament force after implantation of a synthetic anterior cruciate ligament. In vitro measurement. More RC; Markolf KL J Bone Joint Surg Am; 1988 Aug; 70(7):1020-31. PubMed ID: 3403570 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical studies of double-bundle posterior cruciate ligament reconstructions. Markolf KL; Feeley BT; Jackson SR; McAllister DR J Bone Joint Surg Am; 2006 Aug; 88(8):1788-94. PubMed ID: 16882903 [TBL] [Abstract][Full Text] [Related]
12. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. Markolf KL; Hame S; Hunter DM; Oakes DA; Zoric B; Gause P; Finerman GA J Orthop Res; 2002 Sep; 20(5):1016-24. PubMed ID: 12382968 [TBL] [Abstract][Full Text] [Related]
13. Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. Markolf KL; Park S; Jackson SR; McAllister DR J Bone Joint Surg Am; 2008 Aug; 90(8):1681-9. PubMed ID: 18676898 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical comparison of tibial inlay and tibial tunnel techniques for reconstruction of the posterior cruciate ligament. Analysis of graft forces. Oakes DA; Markolf KL; McWilliams J; Young CR; McAllister DR J Bone Joint Surg Am; 2002 Jun; 84(6):938-44. PubMed ID: 12063327 [TBL] [Abstract][Full Text] [Related]
16. Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. Markolf KL; Kochan A; Amstutz HC J Bone Joint Surg Am; 1984 Feb; 66(2):242-52. PubMed ID: 6693451 [TBL] [Abstract][Full Text] [Related]
17. The effect of section of the medial collateral ligament on force generated in the anterior cruciate ligament. Shapiro MS; Markolf KL; Finerman GA; Mitchell PW J Bone Joint Surg Am; 1991 Feb; 73(2):248-56. PubMed ID: 1993720 [TBL] [Abstract][Full Text] [Related]
18. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Loh JC; Fukuda Y; Tsuda E; Steadman RJ; Fu FH; Woo SL Arthroscopy; 2003 Mar; 19(3):297-304. PubMed ID: 12627155 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Suzuki T; Shino K; Otsubo H; Suzuki D; Mae T; Fujimiya M; Yamashita T; Fujie H Arthroscopy; 2014 Oct; 30(10):1294-302. PubMed ID: 25064752 [TBL] [Abstract][Full Text] [Related]
20. The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon . A cadaveric study comparing anterior tibial and rotational loads. Woo SL; Kanamori A; Zeminski J; Yagi M; Papageorgiou C; Fu FH J Bone Joint Surg Am; 2002 Jun; 84(6):907-14. PubMed ID: 12063323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]