These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 893467)
21. A viscoelastic model for use in predicting arterial pulse waves. Holenstein R; Niederer P; Anliker M J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195 [TBL] [Abstract][Full Text] [Related]
22. Nonlinear elastic analysis of blood vessels. Wu SG; Lee GC; Tseng NT J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535 [TBL] [Abstract][Full Text] [Related]
23. Parameter sensitivity analysis and improvement of a two-layer arterial wall model. von Maltzahn WW J Biomech Eng; 1983 Nov; 105(4):389-92. PubMed ID: 6645449 [TBL] [Abstract][Full Text] [Related]
24. Stress gradients in the walls of large arteries. Doyle JM; Dobrin PB J Biomech; 1973 Nov; 6(6):631-9. PubMed ID: 4757481 [No Abstract] [Full Text] [Related]
27. Elastic response of filament wound arterial prostheses under internal pressure. Hellener G; Cohn D; Marom G Biomaterials; 1994 Nov; 15(14):1115-21. PubMed ID: 7893913 [TBL] [Abstract][Full Text] [Related]
28. Lung parenchyma described as a prestressed compressible material. Lai-Fook SJ J Biomech; 1977; 10(5-6):357-65. PubMed ID: 893474 [No Abstract] [Full Text] [Related]
29. Compatibility and the genesis of residual stress by volumetric growth. Skalak R; Zargaryan S; Jain RK; Netti PA; Hoger A J Math Biol; 1996; 34(8):889-914. PubMed ID: 8858855 [TBL] [Abstract][Full Text] [Related]
30. Transcutaneous assessment of arterial elasticity. Brew WK; Fitzgerald DE Ultrasound Med Biol; 1977; 2(4):263-70. PubMed ID: 141150 [No Abstract] [Full Text] [Related]
31. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related]
33. A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung. Dortmans LJ; van de Ven AA; Sauren AA J Biomech Eng; 1994 Aug; 116(3):373-5. PubMed ID: 7799643 [TBL] [Abstract][Full Text] [Related]
34. Conditions of flow at interfaces with flexible walls. Silberberg A Ann N Y Acad Sci; 1976; 275():2-9. PubMed ID: 1070271 [TBL] [Abstract][Full Text] [Related]
35. Effects of age on the mechanical properties of rat carotid artery. Cox RH Am J Physiol; 1977 Aug; 233(2):H256-63. PubMed ID: 888969 [No Abstract] [Full Text] [Related]
36. [Analogs and models of systemic arterial circulation]. Thiry PS; Roberge FA Rev Can Biol; 1976 Dec; 35(4):217-38. PubMed ID: 1030816 [TBL] [Abstract][Full Text] [Related]
37. Prerupture behavior of biosystems under stress. Yuan Hsiao CY; Liu CH; Hsiao CC J Biomech; 1978; 11(6-7):309-13. PubMed ID: 711780 [No Abstract] [Full Text] [Related]
38. Static elastic properties of the left coronary circumflex artery and the common carotid artery in dogs. Patel DJ; Janicki JS Circ Res; 1970 Aug; 27(2):149-58. PubMed ID: 5455623 [No Abstract] [Full Text] [Related]
39. Three models of the vibrating ulna. Jurist JM; Kianian K J Biomech; 1973 Jul; 6(4):331-42. PubMed ID: 4732933 [No Abstract] [Full Text] [Related]
40. [Negative feedbacks in the pathogenesis of primary arterial hypertension: the mechanical sensitivity of the endothelium]. Khaiutin VM; Lukoshkova EV; Rogova AN; Nikol'skiĭ VP Fiziol Zh Im I M Sechenova; 1993 Aug; 79(8):1-21. PubMed ID: 8252090 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]