These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 893471)

  • 21. Effect of formaldehyde fixation on some mechanical properties of bovine bone.
    Currey JD; Brear K; Zioupos P; Reilly GC
    Biomaterials; 1995 Nov; 16(16):1267-71. PubMed ID: 8589198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cement line motion in bone.
    Lakes R; Saha S
    Science; 1979 May; 204(4392):501-3. PubMed ID: 432653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study.
    Lu WW; Cheung KM; Li YW; Luk KD; Holmes AD; Zhu QA; Leong JC
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2684-90; discussion 2690-1. PubMed ID: 11740355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rate-independent continuum model for bone tissue with interaction of compressive and tensile micro-damage.
    Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2017 Oct; 74():448-462. PubMed ID: 28735723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient study of couple stress effects in compact bone: torsion.
    Yang JF; Lakes RS
    J Biomech Eng; 1981 Nov; 103(4):275-9. PubMed ID: 7311494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical and morphological aspects of experimental overload and fatigue in bone.
    Chamay A
    J Biomech; 1970 May; 3(3):263-70. PubMed ID: 5521544
    [No Abstract]   [Full Text] [Related]  

  • 27. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on mechanical strength of bone. I. Torsional strength of normal rabbit tibio-fibular bone.
    Paavolainen P
    Acta Orthop Scand; 1978 Dec; 49(6):497-505. PubMed ID: 735775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanical testing of bone in bending.
    Simkin A; Robin G
    J Biomech; 1973 Jan; 6(1):31-9. PubMed ID: 4735080
    [No Abstract]   [Full Text] [Related]  

  • 30. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling fatigue damage evolution in bone.
    Pidaparti RM; Wang QY; Burr DB
    Biomed Mater Eng; 2001; 11(2):69-78. PubMed ID: 11352114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-dependent fatigue behaviour of human cortical bone.
    Diab T; Sit S; Kim D; Rho J; Vashishth D
    Eur J Morphol; 2005; 42(1-2):53-9. PubMed ID: 16123024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in bone mechanical strength in response to physical therapy.
    Ksiezopolska-Orłowska K
    Pol Arch Med Wewn; 2010 Sep; 120(9):368-73. PubMed ID: 20864911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation.
    Shimamoto N; Kotani Y; Shono Y; Kadoya K; Abumi K; Kaneda K; Minami A
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2701-8. PubMed ID: 11740358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Understanding Bisphosphonate Effects on Bone Mechanical Properties.
    Allen MR
    Curr Osteoporos Rep; 2018 Apr; 16(2):198-204. PubMed ID: 29497927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Evaluation of bone sterngth].
    Mashiba T
    Clin Calcium; 2016 Jan; 26(1):43-8. PubMed ID: 26728529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24918250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling modulus reduction in bovine trabecular bone damaged in compression.
    Moore TL; Gibson LJ
    J Biomech Eng; 2001 Dec; 123(6):613-22. PubMed ID: 11783733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.