These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 893487)

  • 1. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology, and histology.
    Johnson PF; Bernstein JJ; Hunter G; Dawson WW; Hench LL
    J Biomed Mater Res; 1977 Sep; 11(5):637-56. PubMed ID: 893487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of etched tantalum semimicro capacitor stimulation electrodes.
    Robblee LS; Kelliher EM; Langmuir ME; Vartanian H; McHardy J
    J Biomed Mater Res; 1983 Mar; 17(2):327-43. PubMed ID: 6841372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface treatments on anodic oxide film growth and electrochemical properties of tantalum used for biomedical applications.
    Silva RA; Silva IP; Rondot B
    J Biomater Appl; 2006 Jul; 21(1):93-103. PubMed ID: 16443631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 316LVM and MP35N alloys as charge injection electrodes.
    Cogan SF; Jones GS; Hills DV; Walter JS; Riedy LW
    J Biomed Mater Res; 1994 Feb; 28(2):233-40. PubMed ID: 8207036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic current density of the disk electrode double-layer.
    Behrend MR; Ahuja AK; Weiland JD
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1056-62. PubMed ID: 18334397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro model for evaluating neural stimulating electrodes.
    Johnson PF; Hench LL
    J Biomed Mater Res; 1976 Nov; 10(6):907-28. PubMed ID: 993227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2004 May; 74(5):372-8. PubMed ID: 15144260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold measurements using stimulating electrodes of different materials in the skeletal muscles of cats.
    Weidlich E; Richter GJ; Mund K; von Sturm F; David E; Brandt G
    Med Prog Technol; 1980 Apr; 7(1):11-9. PubMed ID: 7382924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes.
    McCreery DB; Agnew WF; Yuen TG; Bullara LA
    Ann Biomed Eng; 1988; 16(5):463-81. PubMed ID: 3189974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitor electrode stimulates nerve or muscle without oxidation-reduction reactions.
    Guyton DL; Hambrecht FT
    Science; 1973 Jul; 181(4094):74-6. PubMed ID: 4197450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical histopathology following stimulation with metallic and carbon electrodes.
    Bernstein JJ; Johnson PF; Hench LL; Hunter G; Dawson WW
    Brain Behav Evol; 1977 Feb; 14(1-2):126-57. PubMed ID: 319878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal activation of the feline retina via a suprachoroidal electrode array.
    Wong YT; Chen SC; Seo JM; Morley JW; Lovell NH; Suaning GJ
    Vision Res; 2009 Mar; 49(8):825-33. PubMed ID: 19272402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.