These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 893543)

  • 21. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control.
    Sluder G; Miller FJ; Cole R; Rieder CL
    J Cell Biol; 1990 Jun; 110(6):2025-32. PubMed ID: 2351692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a functional role of RNA in centrioles.
    Heidemann SR; Sander G; Kirschner MW
    Cell; 1977 Mar; 10(3):337-50. PubMed ID: 403009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies.
    Heidemann SR; Kirschner MW
    J Cell Biol; 1975 Oct; 67(1):105-17. PubMed ID: 1236852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The induction of de novo centrioles in sea urchin eggs: a possible common mechanism for centriolar activation among parthenogenetic procedures.
    Kallenbach RJ
    Eur J Cell Biol; 1983 May; 30(2):159-66. PubMed ID: 11596489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo.
    Henson JH; Begg DA; Beaulieu SM; Fishkind DJ; Bonder EM; Terasaki M; Lebeche D; Kaminer B
    J Cell Biol; 1989 Jul; 109(1):149-61. PubMed ID: 2663877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes.
    Czihak G; Kojima M; Linhart J; Vogel H
    Eur J Cell Biol; 1991 Aug; 55(2):255-61. PubMed ID: 1935990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage.
    Harris P; Osborn M; Weber K
    J Cell Biol; 1980 Mar; 84(3):668-79. PubMed ID: 6987246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous hypertonic conditions activate and promote the formation of new centrioles within cytasters in sea urchin eggs.
    Kallenbach RJ
    Cell Biol Int Rep; 1982 Nov; 6(11):1025-31. PubMed ID: 6890880
    [No Abstract]   [Full Text] [Related]  

  • 31. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The presence of centrioles in artificially activated sea urchin eggs.
    DIRKSEN ER
    J Biophys Biochem Cytol; 1961 Oct; 11(1):244-7. PubMed ID: 13886557
    [No Abstract]   [Full Text] [Related]  

  • 33. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs.
    Sluder G; Lewis K
    J Exp Zool; 1987 Oct; 244(1):89-100. PubMed ID: 3694143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus).
    Salmon ED; Segall RR
    J Cell Biol; 1980 Aug; 86(2):355-65. PubMed ID: 7190569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of cleavage in nucleated and enucleated frog eggs by injection of isolated sea-urchin mitotic apparatus.
    Masui Y; Forer A; Zimmerman AM
    J Cell Sci; 1978 Jun; 31():117-35. PubMed ID: 307558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change in the heterogeneous distribution of tubulin isotypes in mitotic microtubules of the sea urchin egg by treatment with microtubule depolymerizing or stabilizing drugs.
    Oka MT; Arai T; Hamaguchi Y
    Cell Struct Funct; 1991 Apr; 16(2):125-34. PubMed ID: 1860140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. INDUCTION OF ASTER FORMATION AND CLEAVAGE IN EGGS OF THE SEA URCHIN HEMICENTROTUS PULCHERRIMUS BY INJECTION OF SPERM COMPONENTS.
    Hirano KI; Ishikawa M
    Dev Growth Differ; 1979; 21(5):473-481. PubMed ID: 37280919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Configurations of microtubules in artificially activated eggs of the sea urchin Lytechinus variegatus.
    Bestor TH; Schatten G
    Exp Cell Res; 1982 Sep; 141(1):71-8. PubMed ID: 6126387
    [No Abstract]   [Full Text] [Related]  

  • 40. Activation of maternal centrosomes in unfertilized sea urchin eggs.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1992; 23(1):61-70. PubMed ID: 1356637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.