These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8935493)

  • 1. Analysis of stresses in two-dimensional models of normal and neuropathic feet.
    Patil KM; Braak LH; Huson A
    Med Biol Eng Comput; 1996 Jul; 34(4):280-4. PubMed ID: 8935493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of tarsal disintegration and plantar ulcers in leprosy by stress analysis in three dimensional foot models.
    Patil KM; Jacob S
    Indian J Lepr; 2000; 72(1):69-86. PubMed ID: 10935188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen's disease with muscle paralysis.
    Jacob S; Patil MK
    J Rehabil Res Dev; 1999 Jul; 36(3):252-63. PubMed ID: 10659808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress analysis in three-dimensional foot models of normal and diabetic neuropathy.
    Jacob S; Patil MK
    Front Med Biol Eng; 1999; 9(3):211-27. PubMed ID: 10612561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The paper grip test for screening on intrinsic muscle paralysis in the foot of leprosy patients.
    de Win MM; Theuvenet WJ; Roche PW; de Bie RA; van Mameren H
    Int J Lepr Other Mycobact Dis; 2002 Mar; 70(1):16-24. PubMed ID: 12120036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional stress analysis for the mechanics of plantar ulcers in diabetic neuropathy.
    Thomas VJ; Patil KM; Radhakrishnan S
    Med Biol Eng Comput; 2004 Mar; 42(2):230-5. PubMed ID: 15125154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.
    Yarnitzky G; Yizhar Z; Gefen A
    J Biomech; 2006; 39(14):2673-89. PubMed ID: 16212969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical simulation of high-heeled shoe donning and walking.
    Yu J; Cheung JT; Wong DW; Cong Y; Zhang M
    J Biomech; 2013 Aug; 46(12):2067-74. PubMed ID: 23855974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of ankle mobility in foot rollover during gait in individuals with diabetic neuropathy.
    Sacco IC; Hamamoto AN; Gomes AA; Onodera AN; Hirata RP; Hennig EM
    Clin Biomech (Bristol); 2009 Oct; 24(8):687-92. PubMed ID: 19497649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of tibio-talar arthrodesis on foot kinematics and ground reaction force progression during walking.
    Beyaert C; Sirveaux F; Paysant J; Molé D; André JM
    Gait Posture; 2004 Aug; 20(1):84-91. PubMed ID: 15196525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot impairments and limitations in walking activities in people affected by leprosy.
    Slim FJ; Keukenkamp R; van Schie CH; Faber WR; Nollet F
    J Rehabil Med; 2011 Jan; 43(1):32-8. PubMed ID: 21042702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tarsal disintegration (T.D.) in leprosy.
    Kulkarni VN; Mehta JM
    Lepr India; 1983 Apr; 55(2):338-70. PubMed ID: 6632789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New on-line parameters for analysis of dynamic foot pressures in neuropathic feet of Hansen's disease subjects.
    Bhatia MM; Patil KM
    J Rehabil Res Dev; 1999 Jul; 36(3):264-72. PubMed ID: 10659809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait.
    Bonnet X; Pillet H; Fodé P; Lavaste F; Skalli W
    Proc Inst Mech Eng H; 2012 Jan; 226(1):70-5. PubMed ID: 22888587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and control of the flat versus normal foot during the stance phase of walking.
    Hunt AE; Smith RM
    Clin Biomech (Bristol); 2004 May; 19(4):391-7. PubMed ID: 15109760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of plantar fascia during walking: a quasi-static simulation.
    Chen YN; Chang CW; Li CT; Chang CH; Lin CF
    Foot Ankle Int; 2015 Jan; 36(1):90-7. PubMed ID: 25189539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications.
    Gefen A; Megido-Ravid M; Itzchak Y; Arcan M
    J Biomech Eng; 2000 Dec; 122(6):630-9. PubMed ID: 11192385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time controller for foot-drop correction by using surface electromyography sensor.
    Al Mashhadany YI; Abd Rahim N
    Proc Inst Mech Eng H; 2013 Apr; 227(4):373-83. PubMed ID: 23637213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.