BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8935591)

  • 41. Prestress mediates force propagation into the nucleus.
    Hu S; Chen J; Butler JP; Wang N
    Biochem Biophys Res Commun; 2005 Apr; 329(2):423-8. PubMed ID: 15737604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress.
    Chiba M; Mitani H
    Cell Biochem Funct; 2004; 22(4):249-56. PubMed ID: 15248185
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton.
    Ezzell RM; Goldmann WH; Wang N; Parashurama N; Ingber DE
    Exp Cell Res; 1997 Feb; 231(1):14-26. PubMed ID: 9056408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells.
    Jaasma MJ; Jackson WM; Tang RY; Keaveny TM
    J Biomech; 2007; 40(9):1938-45. PubMed ID: 17097091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemically encapsulated structural elements for probing the mechanical responses of biologically inspired systems.
    Zhang Y; Cheng CM; Cusick B; LeDuc PR
    Langmuir; 2007 Jul; 23(15):8129-34. PubMed ID: 17585787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global cytoskeletal control of mechanotransduction in kidney epithelial cells.
    Alenghat FJ; Nauli SM; Kolb R; Zhou J; Ingber DE
    Exp Cell Res; 2004 Nov; 301(1):23-30. PubMed ID: 15501441
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy.
    Ma W; Sun Y; Han D; Chu W; Lin D; Chen D
    Microsc Res Tech; 2006 Oct; 69(10):784-93. PubMed ID: 16892194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics.
    Cañadas P; Wendling-Mansuy S; Isabey D
    J Biomech Eng; 2006 Aug; 128(4):487-95. PubMed ID: 16813440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
    Su J; Jiang X; Welsch R; Whitesides GM; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):87-104. PubMed ID: 17937113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tensegrity I. Cell structure and hierarchical systems biology.
    Ingber DE
    J Cell Sci; 2003 Apr; 116(Pt 7):1157-73. PubMed ID: 12615960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical model of cytoskeleton structuration during cell adhesion and spreading.
    Maurin B; Cañadas P; Baudriller H; Montcourrier P; Bettache N
    J Biomech; 2008; 41(9):2036-41. PubMed ID: 18466907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tensegrity behaviour of cortical and cytosolic cytoskeletal components in twisted living adherent cells.
    Laurent VM; Cañadas P; Fodil R; Planus E; Asnacios A; Wendling S; Isabey D
    Acta Biotheor; 2002; 50(4):331-56. PubMed ID: 12675535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multiscale model for red blood cell mechanics.
    Hartmann D
    Biomech Model Mechanobiol; 2010 Feb; 9(1):1-17. PubMed ID: 19440743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells.
    Wang N; Tolić-Nørrelykke IM; Chen J; Mijailovich SM; Butler JP; Fredberg JJ; Stamenović D
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C606-16. PubMed ID: 11832346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells.
    Stamenović D; Liang Z; Chen J; Wang N
    J Appl Physiol (1985); 2002 Apr; 92(4):1443-50. PubMed ID: 11896008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton.
    Cañadas P; Laurent VM; Oddou C; Isabey D; Wendling S
    J Theor Biol; 2002 Sep; 218(2):155-73. PubMed ID: 12381289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tensegrity-based mechanosensing from macro to micro.
    Ingber DE
    Prog Biophys Mol Biol; 2008; 97(2-3):163-79. PubMed ID: 18406455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the significance of microtubule flexural behavior in cytoskeletal mechanics.
    Mehrbod M; Mofrad MR
    PLoS One; 2011; 6(10):e25627. PubMed ID: 21998675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.
    Lau EW
    J Mech Behav Biomed Mater; 2013 Jan; 17():112-25. PubMed ID: 23127643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.