These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8935653)

  • 21. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1.
    Yamaguchi-Iwai Y; Serpe M; Haile D; Yang W; Kosman DJ; Klausner RD; Dancis A
    J Biol Chem; 1997 Jul; 272(28):17711-8. PubMed ID: 9211922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase.
    Finegold AA; Shatwell KP; Segal AW; Klausner RD; Dancis A
    J Biol Chem; 1996 Dec; 271(49):31021-4. PubMed ID: 8940093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
    Lesuisse E; Labbe P
    J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO.
    Shinyashiki M; Pan CJ; Lopez BE; Fukuto JM
    Free Radic Biol Med; 2004 Sep; 37(5):713-23. PubMed ID: 15288128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport.
    Inman RS; Coughlan MM; Wessling-Resnick M
    Biochemistry; 1994 Oct; 33(39):11850-7. PubMed ID: 7918403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway.
    Labbé S; Zhu Z; Thiele DJ
    J Biol Chem; 1997 Jun; 272(25):15951-8. PubMed ID: 9188496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
    Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D
    J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae.
    Dancis A; Klausner RD; Hinnebusch AG; Barriocanal JG
    Mol Cell Biol; 1990 May; 10(5):2294-301. PubMed ID: 2183029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J; Wessling-Resnick M
    J Biol Chem; 1998 Mar; 273(12):6909-15. PubMed ID: 9506995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii.
    Allen MD; del Campo JA; Kropat J; Merchant SS
    Eukaryot Cell; 2007 Oct; 6(10):1841-52. PubMed ID: 17660359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes.
    Fedorovich D; Protchenko O; Lesuisse E
    Biometals; 1999 Dec; 12(4):295-300. PubMed ID: 10816728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ferrireductase from Pichia guilliermondii: properties and regulation of activity and synthesis].
    Fedorovych DV; Protchenko OV; Shavlovs'kyĭ HM
    Ukr Biokhim Zh (1978); 1995; 67(1):32-7. PubMed ID: 8588251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole.
    Singh A; Kaur N; Kosman DJ
    J Biol Chem; 2007 Sep; 282(39):28619-28626. PubMed ID: 17681937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae.
    Dix DR; Bridgham JT; Broderius MA; Byersdorfer CA; Eide DJ
    J Biol Chem; 1994 Oct; 269(42):26092-9. PubMed ID: 7929320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation.
    Hector RE; Bowman MJ; Skory CD; Cotta MA
    N Biotechnol; 2009 Oct; 26(3-4):171-80. PubMed ID: 19712762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae.
    Azad GK; Singh V; Golla U; Tomar RS
    PLoS One; 2013; 8(3):e59003. PubMed ID: 23520547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative regulation of the Saccharomyces cerevisiae ANB1 gene by heme, as mediated by the ROX1 gene product.
    Lowry CV; Lieber RH
    Mol Cell Biol; 1986 Dec; 6(12):4145-8. PubMed ID: 3540607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats.
    Umbreit JN; Conrad ME; Moore EG; Desai MP; Turrens J
    Biochemistry; 1996 May; 35(20):6460-9. PubMed ID: 8639593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases.
    Su D; Asard H
    FEBS J; 2006 Aug; 273(16):3722-34. PubMed ID: 16911521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae.
    Mösch HU; Kübler E; Krappmann S; Fink GR; Braus GH
    Mol Biol Cell; 1999 May; 10(5):1325-35. PubMed ID: 10233147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.