These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8936370)

  • 1. Bidirectional transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions.
    Parekh M; Drake HL; Daniel SL
    Lett Appl Microbiol; 1996 Feb; 22(2):115-20. PubMed ID: 8936370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains.
    Zellner G; Kneifel H; Winter J
    Appl Environ Microbiol; 1990 Jul; 56(7):2228-33. PubMed ID: 2389937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of aromatic aldehydes as cosubstrates by the acetogen Clostridium formicoaceticum.
    Frank C; Schwarz U; Matthies C; Drake HL
    Arch Microbiol; 1998 Nov; 170(6):427-34. PubMed ID: 9799286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.
    MacKintosh RW; Fewson CA
    Biochem J; 1988 Oct; 255(2):653-61. PubMed ID: 3060114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic toluene oxidation to benzyl alcohol and benzaldehyde in a denitrifying Pseudomonas strain.
    Altenschmidt U; Fuchs G
    J Bacteriol; 1992 Jul; 174(14):4860-2. PubMed ID: 1624475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercapturic acids as metabolites of aromatic aldehydes and alcohols.
    Seutter-Berlage F; Rietveld EC; Plate R; Klippert PJ
    Adv Exp Med Biol; 1981; 136 Pt A():359-67. PubMed ID: 7344466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications.
    Shaw JP; Schwager F; Harayama S
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):789-94. PubMed ID: 1590768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans.
    Steenkamp DJ; Peck HD
    J Biol Chem; 1981 Jun; 256(11):5450-8. PubMed ID: 7016854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of growth of Acinetobacter calcoaceticus NCIB8250 on benzyl alcohol in batch culture.
    Beggs JD; Cook AM; Fewson CA
    J Gen Microbiol; 1976 Oct; 96(2):365-74. PubMed ID: 993779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds.
    Parekh M; Keith ES; Daniel SL; Drake HL
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):69-74. PubMed ID: 1521774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate.
    Altenschmidt U; Fuchs G
    Arch Microbiol; 1991; 156(2):152-8. PubMed ID: 1781729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774, the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells.
    Saraiva LM; da Costa PN; Conte C; Xavier AV; LeGall J
    Biochim Biophys Acta; 2001 Jul; 1520(1):63-70. PubMed ID: 11470160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
    Kunjapur AM; Tarasova Y; Prather KL
    J Am Chem Soc; 2014 Aug; 136(33):11644-54. PubMed ID: 25076127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture.
    Genthner BR; Townsend GT; Blattmann BO
    Appl Environ Microbiol; 1997 Dec; 63(12):4698-703. PubMed ID: 9471962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a tungsten-stimulated aldehyde dehydrogenase activity of Desulfovibrio simplex that oxidizes aliphatic and aromatic aldehydes with flavins as coenzymes.
    Zellner G; Jargon A
    Arch Microbiol; 1997 Dec; 168(6):480-5. PubMed ID: 9385139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin.
    Lomascolo A; Asther M; Navarro D; Antona C; Delattre M; Lesage-Meessen L
    Lett Appl Microbiol; 2001 Apr; 32(4):262-7. PubMed ID: 11298938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine.
    Willis CL; Cummings JH; Neale G; Gibson GR
    Curr Microbiol; 1997 Nov; 35(5):294-8. PubMed ID: 9462959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress.
    Cadby IT; Busby SJ; Cole JA
    Biochem Soc Trans; 2011 Jan; 39(1):224-9. PubMed ID: 21265778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection.
    Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.