These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8936395)

  • 1. Preparation for action: an ERP study about two tasks provoking variability in response speed.
    Wascher E; Verleger R; Jaskowski P; Wauschkuhn B
    Psychophysiology; 1996 May; 33(3):262-72. PubMed ID: 8936395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow brain potentials associated with motor preparation and stimulus anticipation.
    Philipova D; Popivanov D; Georgieva S; Tchukanova R
    Acta Physiol Pharmacol Bulg; 2001; 26(1-2):107-10. PubMed ID: 11693387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNV, PINV and probe-evoked potentials in schizophrenics.
    Wagner M; Rendtorff N; Kathmann N; Engel RR
    Electroencephalogr Clin Neurophysiol; 1996 Feb; 98(2):130-43. PubMed ID: 8598173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociating temporal attention from spatial attention and motor response preparation: A high-density EEG study.
    Faugeras F; Naccache L
    Neuroimage; 2016 Jan; 124(Pt A):947-957. PubMed ID: 26433120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grouping mechanisms in response preparation investigated with event-related brain potentials.
    Sangals J; Dippel G; Sommer W
    Psychophysiology; 2012 Mar; 49(3):421-6. PubMed ID: 22091759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pre-stimulus processing on subsequent events in a warned Go/NoGo paradigm: response preparation, execution and inhibition.
    Smith JL; Johnstone SJ; Barry RJ
    Int J Psychophysiol; 2006 Aug; 61(2):121-33. PubMed ID: 16214250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task preparation processes related to reward prediction precede those related to task-difficulty expectation.
    Schevernels H; Krebs RM; Santens P; Woldorff MG; Boehler CN
    Neuroimage; 2014 Jan; 84():639-47. PubMed ID: 24064071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of ERP components by task instructions in a cued go/no-go task.
    Aasen IE; Brunner JF
    Psychophysiology; 2016 Feb; 53(2):171-85. PubMed ID: 26488615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The anticipatory potential (contingent negative variation) as an indicator of neuronal information processing in relation to changes in slow potentials in the EEG].
    Korunka C; Bauer H; Wolek A; Leodolter M
    Z Exp Angew Psychol; 1990; 37(1):52-68. PubMed ID: 2333723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNV resolution does not cause NoGo anteriorisation of the P3: a failure to replicate Simson et al.
    Smith JL; Barry RJ; Steiner GZ
    Int J Psychophysiol; 2013 Sep; 89(3):349-57. PubMed ID: 23669175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNV and temporal uncertainty with 'ageing' and 'non-ageing' S1-S2 intervals.
    Trillenberg P; Verleger R; Wascher E; Wauschkuhn B; Wessel K
    Clin Neurophysiol; 2000 Jul; 111(7):1216-26. PubMed ID: 10880797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of CNV and PINV in schizotypal personality.
    Klein C; Andresen B; Berg P; Krüger H; Rockstroh B
    Psychophysiology; 1998 May; 35(3):272-82. PubMed ID: 9564747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow EEG potentials (contingent negative variation and post-imperative negative variation) in schizophrenia: their association to the present state and to Parkinsonian medication effects.
    Verleger R; Wascher E; Arolt V; Daase C; Strohm A; Kömpf D
    Clin Neurophysiol; 1999 Jul; 110(7):1175-92. PubMed ID: 10423184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Component-specific self-regulation of slow cortical potentials and its effect on behavior: an exploratory study.
    Siniatchkin M; Gerber WD
    Appl Psychophysiol Biofeedback; 2011 Mar; 36(1):15-25. PubMed ID: 20645126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reinforcing value of delay escape in attention deficit/hyperactivity disorder: An electrophysiological study.
    Chronaki G; Benikos N; Soltesz F; Sonuga-Barke EJS
    Neuroimage Clin; 2019; 23():101917. PubMed ID: 31491823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between CNV and timing of an upcoming event.
    Pfeuty M; Ragot R; Pouthas V
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):106-11. PubMed ID: 15911131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm.
    Cordones I; Gómez CM; Escudero M
    PLoS One; 2013; 8(5):e63751. PubMed ID: 23671699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relation of movement-related potentials to the go/no-go effect on P3.
    Verleger R; Paehge T; Kolev V; Yordanova J; Jaśkowski P
    Biol Psychol; 2006 Oct; 73(3):298-313. PubMed ID: 16837117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic differences in CNV amplitude reflect different preparatory processes.
    Leynes PA; Allen JD; Marsh RL
    Int J Psychophysiol; 1998 Dec; 31(1):33-44. PubMed ID: 9934619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrophysiological study of response conflict processing across the lifespan: assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression.
    Hämmerer D; Li SC; Müller V; Lindenberger U
    Neuropsychologia; 2010 Sep; 48(11):3305-16. PubMed ID: 20638396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.