BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8936433)

  • 41. Construction of a bicistronic vector for the co-expression of two genes in Caenorhabditis elegans using a newly identified IRES.
    Li D; Wang M
    Biotechniques; 2012 Mar; 52(3):173-6. PubMed ID: 22401550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induction of reproductive deficits in nematode Caenorhabditis elegans exposed to metals at different developmental stages.
    Guo Y; Yang Y; Wang D
    Reprod Toxicol; 2009 Jul; 28(1):90-5. PubMed ID: 19490999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia.
    Tejeda-Benitez L; Flegal R; Odigie K; Olivero-Verbel J
    Environ Pollut; 2016 May; 212():238-250. PubMed ID: 26851980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans.
    Roh JY; Choi J
    Chemosphere; 2011 Sep; 84(10):1356-61. PubMed ID: 21658740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination.
    Ma H; Glenn TC; Jagoe CH; Jones KL; Williams PL
    Environ Toxicol Chem; 2009 Jun; 28(6):1311-8. PubMed ID: 19175297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of β-exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans.
    Sánchez-Soto AI; Saavedra-González GI; Ibarra JE; Salcedo-Hernández R; Barboza-Corona JE; Del Rincón-Castro MC
    Lett Appl Microbiol; 2015 Dec; 61(6):562-7. PubMed ID: 26381648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor.
    Saikia SK; Gupta R; Pant A; Pandey R
    J Expo Sci Environ Epidemiol; 2014; 24(2):180-4. PubMed ID: 24149972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.
    Clavijo A; Kronberg MF; Rossen A; Moya A; Calvo D; Salatino SE; Pagano EA; Morábito JA; Munarriz ER
    Sci Total Environ; 2016 Nov; 569-570():252-261. PubMed ID: 27343944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Response of nematode communities to metals and PAHs in freshwater microcosms.
    Haegerbaeumer A; Höss S; Heininger P; Traunspurger W
    Ecotoxicol Environ Saf; 2018 Feb; 148():244-253. PubMed ID: 29065374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA.
    Maduro M; Pilgrim D
    Gene; 1996 Dec; 183(1-2):77-85. PubMed ID: 8996090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein.
    Höss S; Nguyen HT; Menzel R; Pagel-Wieder S; Miethling-Graf R; Tebbe CC; Jehle JA; Traunspurger W
    Sci Total Environ; 2011 Jun; 409(13):2674-84. PubMed ID: 21511326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.
    Manière X; Krisko A; Pellay FX; Di Meglio JM; Hersen P; Matic I
    Exp Gerontol; 2014 Dec; 60():12-7. PubMed ID: 25218444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism.
    Höss S; Jänsch S; Moser T; Junker T; Römbke J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1811-8. PubMed ID: 19665791
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain.
    Chu KW; Chan SK; Chow KL
    Aquat Toxicol; 2005 Sep; 74(4):320-32. PubMed ID: 16040138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative stress in Caenorhabditis elegans: protective effects of the Omega class glutathione transferase (GSTO-1).
    Burmeister C; Lüersen K; Heinick A; Hussein A; Domagalski M; Walter RD; Liebau E
    FASEB J; 2008 Feb; 22(2):343-54. PubMed ID: 17901115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-thermal heat-shock response to microwaves.
    de Pomerai D; Daniells C; David H; Allan J; Duce I; Mutwakil M; Thomas D; Sewell P; Tattersall J; Jones D; Candido P
    Nature; 2000 May; 405(6785):417-8. PubMed ID: 10839528
    [No Abstract]   [Full Text] [Related]  

  • 57. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil.
    Peredney CL; Williams PL
    Arch Environ Contam Toxicol; 2000 Jul; 39(1):113-8. PubMed ID: 10790509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans.
    Schultz CL; Lahive E; Lawlor A; Crossley A; Puntes V; Unrine JM; Svendsen C; Spurgeon DJ
    Environ Toxicol Chem; 2018 Oct; 37(10):2609-2618. PubMed ID: 30003578
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.
    Fajardo C; Costa G; Ortiz LT; Nande M; Rodríguez-Membibre ML; Martín M; Sánchez-Fortún S
    Ecotoxicol Environ Saf; 2016 Nov; 133():433-41. PubMed ID: 27517140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions.
    Boyd WA; Williams PL
    Environ Toxicol Chem; 2003 May; 22(5):1100-6. PubMed ID: 12729220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.