BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8937720)

  • 1. Spinal 5-HT-receptors and tonic modulation of transmission through a withdrawal reflex pathway in the decerebrated rabbit.
    Clarke RW; Harris J; Houghton AK
    Br J Pharmacol; 1996 Nov; 119(6):1167-76. PubMed ID: 8937720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement and depression of spinal reflexes by 8-hydroxy-2-(di-n-propylamino)tetralin in the decerebrated and spinalized rabbit: involvement of 5-HT1A- and non-5-HT1A-receptors.
    Clarke RW; Ogilvie J; Houghton AK
    Br J Pharmacol; 1997 Oct; 122(4):631-8. PubMed ID: 9375958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of 5-HT1B/1D receptors in modulating transmission in a spinal reflex pathway in the decerebrated rabbit.
    Ogilvie J; Wigglesworth M; Appleby L; Kingston TO; Clarke RW
    Br J Pharmacol; 1999 Oct; 128(3):781-7. PubMed ID: 10516662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of RX 821002 at 5-HT1A-receptors in rabbit spinal cord in vivo.
    Ogilvie J; Clarke RW
    Br J Pharmacol; 1998 Mar; 123(6):1138-42. PubMed ID: 9559897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-HT receptors involved in opioid-activated descending inhibition of spinal withdrawal reflexes in the decerebrated rabbit.
    Lo WC; Jackson E; Merriman A; Harris J; Clarke RW
    Pain; 2004 May; 109(1-2):162-71. PubMed ID: 15082138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of 5-HT(1A)-receptors in fentanyl-induced bulbospinal inhibition of a spinal withdrawal reflex in the rabbit.
    Clarke RW; Ward RE
    Pain; 2000 Mar; 85(1-2):239-45. PubMed ID: 10692624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imidazoline I(2)-receptors and spinal reflexes in the decerebrated rabbit.
    Clarke RW; Harris J; Ogilvie J
    Neuropharmacology; 2000 Jul; 39(10):1904-12. PubMed ID: 10884571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic and opioidergic modulation of a spinal reflex in the decerebrated rabbit.
    Clarke RW; Ford TW; Taylor JS
    J Physiol; 1988 Oct; 404():407-17. PubMed ID: 2908126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of adrenergic influences on the sural-gastrocnemius reflex of the decerebrated rabbit.
    Harris J; Clarke RW
    Exp Brain Res; 1992; 92(2):310-7. PubMed ID: 1362959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid and GABA receptors involved in mediation and modulation of tonic and stimulus-evoked inhibition of a spinal reflex in the decerebrated and spinalized rabbit.
    Clarke RW; Bhandari RN; Leggett J
    Neuropharmacology; 2001 Sep; 41(3):311-20. PubMed ID: 11522322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between cutaneous afferent inputs to a withdrawal reflex in the decerebrated rabbit and their control by descending and segmental systems.
    Clarke RW; Eves S; Harris J; Peachey JE; Stuart E
    Neuroscience; 2002; 112(3):555-71. PubMed ID: 12074898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of bulbospinal pathways in fentanyl-induced inhibition of spinal withdrawal reflexes in the decerebrated rabbit.
    Clarke RW; Parry-Baggott C; Houghton AK; Ogilvie J
    Pain; 1998 Dec; 78(3):197-207. PubMed ID: 9870573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NK1-tachykinin receptors and prolonged, stimulus-evoked alterations in the excitability of withdrawal reflexes in the decerebrated and spinalized rabbit.
    Houghton AK; Clarke RW
    Neuroscience; 1995 Jun; 66(3):673-83. PubMed ID: 7644030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonic adrenergic and serotonergic inhibition of a withdrawal reflex in rabbits subjected to different levels of surgical preparation.
    Ogilvie J; Simpson DA; Clarke RW
    Neuroscience; 1999; 89(4):1247-58. PubMed ID: 10362312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cannabinoidergic and opioidergic inhibition of spinal reflexes in the decerebrated, spinalized rabbit.
    Clarke RW; Harris J; Jenkins S; Witton SK
    Neuropharmacology; 2001 Mar; 40(4):570-7. PubMed ID: 11249966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tachykininergic tone in the spinal cord of the rabbit: dependence on nociceptive input arising from invasive surgery.
    Houghton AK; Gorringe CM; Clarke RW
    Neuroscience; 1995 Nov; 69(1):241-8. PubMed ID: 8637622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged inhibition of a spinal reflex after intense stimulation of distant peripheral nerves in the decerebrated rabbit.
    Taylor JS; Neal RI; Harris J; Ford TW; Clarke RW
    J Physiol; 1991 Jun; 437():71-83. PubMed ID: 1679855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of tachykinin NK2 and NK3 receptors in central sensitization of a spinal withdrawal reflex in the decerebrated, spinalized rabbit.
    Houghton AK; Ogilvie J; Clarke RW
    Neuropharmacology; 2000; 39(1):133-40. PubMed ID: 10665826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous adrenergic control of reflexes evoked by mechanical stimulation of the heel in the decerebrated rabbit.
    Clarke RW; Harris J; Houghton AK
    Neurosci Lett; 2001 Aug; 308(3):189-92. PubMed ID: 11479020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation by high intensity peripheral nerve stimulation of adrenergic and opioidergic inhibition of a spinal reflex in the decerebrated rabbit.
    Clarke RW; Ford TW; Taylor JS
    Brain Res; 1989 Dec; 505(1):1-6. PubMed ID: 2558778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.