These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
797 related articles for article (PubMed ID: 8937861)
1. Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Yu L; Waxman DJ Drug Metab Dispos; 1996 Nov; 24(11):1254-62. PubMed ID: 8937861 [TBL] [Abstract][Full Text] [Related]
2. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. Yu LJ; Drewes P; Gustafsson K; Brain EG; Hecht JE; Waxman DJ J Pharmacol Exp Ther; 1999 Mar; 288(3):928-37. PubMed ID: 10027828 [TBL] [Abstract][Full Text] [Related]
3. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Chang TK; Yu L; Maurel P; Waxman DJ Cancer Res; 1997 May; 57(10):1946-54. PubMed ID: 9157990 [TBL] [Abstract][Full Text] [Related]
4. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Chang TK; Weber GF; Crespi CL; Waxman DJ Cancer Res; 1993 Dec; 53(23):5629-37. PubMed ID: 8242617 [TBL] [Abstract][Full Text] [Related]
5. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Chen CS; Lin JT; Goss KA; He YA; Halpert JR; Waxman DJ Mol Pharmacol; 2004 May; 65(5):1278-85. PubMed ID: 15102956 [TBL] [Abstract][Full Text] [Related]
6. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Huang Z; Roy P; Waxman DJ Biochem Pharmacol; 2000 Apr; 59(8):961-72. PubMed ID: 10692561 [TBL] [Abstract][Full Text] [Related]
7. N,N',N''-triethylenethiophosphoramide (thio-TEPA) oxygenation by constitutive hepatic P450 enzymes and modulation of drug metabolism and clearance in vivo by P450-inducing agents. Ng SF; Waxman DJ Cancer Res; 1991 May; 51(9):2340-5. PubMed ID: 1707751 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
9. Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes. Weber GF; Waxman DJ Biochem Pharmacol; 1993 Apr; 45(8):1685-94. PubMed ID: 8484807 [TBL] [Abstract][Full Text] [Related]
10. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Roy P; Yu LJ; Crespi CL; Waxman DJ Drug Metab Dispos; 1999 Jun; 27(6):655-66. PubMed ID: 10348794 [TBL] [Abstract][Full Text] [Related]
11. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Brain EG; Yu LJ; Gustafsson K; Drewes P; Waxman DJ Br J Cancer; 1998 Jun; 77(11):1768-76. PubMed ID: 9667645 [TBL] [Abstract][Full Text] [Related]
12. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
13. Measurement of 4-hydroxylation of ifosfamide in human liver microsomes using the estimation of free and protein-bound acrolein and codetermination of keto- and carboxyifosfamide. Preiss R; Schmidt R; Baumann F; Hanschmann H; Hauss J; Geissler F; Pahlig H; Ratzewiss B J Cancer Res Clin Oncol; 2002 Jul; 128(7):385-92. PubMed ID: 12136253 [TBL] [Abstract][Full Text] [Related]
14. Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Martini R; Murray M Arch Biochem Biophys; 1993 May; 303(1):57-66. PubMed ID: 8489266 [TBL] [Abstract][Full Text] [Related]
15. Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Walker D; Flinois JP; Monkman SC; Beloc C; Boddy AV; Cholerton S; Daly AK; Lind MJ; Pearson AD; Beaune PH Biochem Pharmacol; 1994 Mar; 47(7):1157-63. PubMed ID: 8161344 [TBL] [Abstract][Full Text] [Related]
16. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Chen L; Waxman DJ; Chen D; Kufe DW Cancer Res; 1996 Mar; 56(6):1331-40. PubMed ID: 8640822 [TBL] [Abstract][Full Text] [Related]
17. Modulation of cyclophosphamide-based cytochrome P450 gene therapy using liver P450 inhibitors. Huang Z; Waxman DJ Cancer Gene Ther; 2001 Jun; 8(6):450-8. PubMed ID: 11498765 [TBL] [Abstract][Full Text] [Related]
18. Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Clarke L; Waxman DJ Cancer Res; 1989 May; 49(9):2344-50. PubMed ID: 2706622 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Miyazawa M; Shindo M; Shimada T Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812 [TBL] [Abstract][Full Text] [Related]
20. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Hyland R; Gescher A; Thummel K; Schiller C; Jheeta P; Mynett K; Smith AW; Mráz J Mol Pharmacol; 1992 Feb; 41(2):259-66. PubMed ID: 1538706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]