BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8938119)

  • 21. Physiological characterization of a rare subpopulation of doublet-spiking neurons in the ferret lateral geniculate nucleus.
    Murphy AJ; Hasse JM; Briggs F
    J Neurophysiol; 2020 Aug; 124(2):432-442. PubMed ID: 32667229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum.
    Hurst RS; Cepeda C; Shumate LW; Levine MS
    Dev Neurosci; 2001; 23(2):122-34. PubMed ID: 11509835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmission of spike trains at the retinogeniculate synapse.
    Sincich LC; Adams DL; Economides JR; Horton JC
    J Neurosci; 2007 Mar; 27(10):2683-92. PubMed ID: 17344406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of peripheral NMDA and non-NMDA receptors in development of persistent firing of spinal wide-dynamic-range neurons induced by subcutaneous bee venom injection in the cat.
    Chen J; Li H; Luo C; Li Z; Zheng J
    Brain Res; 1999 Oct; 844(1-2):98-105. PubMed ID: 10536265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus.
    Harata N; Katayama J; Akaike N
    Neuroscience; 1999 Mar; 89(1):109-25. PubMed ID: 10051221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of NMDA and non-NMDA receptor-mediated excitatory synaptic transmission in geniculocortical and corticocortical connections in organotypic coculture preparations.
    Yamada K; Yamamoto N; Toyama K
    Eur J Neurosci; 2000 Nov; 12(11):3854-62. PubMed ID: 11069580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat.
    Miyazaki M; Tanaka I; Ezure K
    Exp Brain Res; 1999 Nov; 129(2):191-200. PubMed ID: 10591893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity-dependent patterning of retinogeniculate axons proceeds with a constant contribution from AMPA and NMDA receptors.
    Hohnke CD; Oray S; Sur M
    J Neurosci; 2000 Nov; 20(21):8051-60. PubMed ID: 11050126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endogenous NMDA-receptor activation regulates glutamate release in cultured spinal neurons.
    Robert A; Black JA; Waxman SG
    J Neurophysiol; 1998 Jul; 80(1):196-208. PubMed ID: 9658041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of striatal activity in conscious rats: contribution of NMDA and AMPA/kainate receptors to both spontaneous and glutamate-driven firing.
    Sandstrom MI; Rebec GV
    Synapse; 2003 Feb; 47(2):91-100. PubMed ID: 12454946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Somatostatin inhibits GABAergic transmission in the sensory thalamus via presynaptic receptors.
    Leresche N; Asprodini E; Emri Z; Cope DW; Crunelli V
    Neuroscience; 2000; 98(3):513-22. PubMed ID: 10869845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AMPA receptor properties at the synapse between retinal afferents and thalamocortical cells in the dorsal lateral geniculate nucleus of the rat.
    Kielland A; Heggelund P
    Neurosci Lett; 2001 Dec; 316(2):59-62. PubMed ID: 11742715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2558-72. PubMed ID: 8747214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic excitation in the dorsal nucleus of the lateral lemniscus: whole-cell patch-clamp recordings from rat brain slice.
    Fu XW; Brezden BL; Kelly JB; Wu SH
    Neuroscience; 1997 Jun; 78(3):815-27. PubMed ID: 9153660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-evoked excitatory synaptic currents of X-type retinal ganglion cells.
    Cohen ED
    J Neurophysiol; 2000 Jun; 83(6):3217-29. PubMed ID: 10848542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potentially epileptogenic dysfunction of cortical NMDA- and GABA-mediated neurotransmission in Otx1-/- mice.
    Sancini G; Franceschetti S; Lavazza T; Panzica F; Cipelletti B; Frassoni C; Spreafico R; Acampora D; Avanzini G
    Eur J Neurosci; 2001 Oct; 14(7):1065-74. PubMed ID: 11683898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thalamocortical and corticocortical excitatory postsynaptic potentials mediated by excitatory amino acid receptors in the cat motor cortex in vivo.
    Salt TE; Meier CL; Seno N; Krucker T; Herrling PL
    Neuroscience; 1995 Jan; 64(2):433-42. PubMed ID: 7700531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prolonged synaptic currents increase relay neuron firing at the developing retinogeniculate synapse.
    Hauser JL; Liu X; Litvina EY; Chen C
    J Neurophysiol; 2014 Oct; 112(7):1714-28. PubMed ID: 24966302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse.
    Golshani P; Warren RA; Jones EG
    J Neurophysiol; 1998 Jul; 80(1):143-54. PubMed ID: 9658036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.