These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8938119)

  • 41. Properties of miniature glutamatergic EPSCs in neurons of the locomotor regions of the developing zebrafish.
    Ali DW; Buss RR; Drapeau P
    J Neurophysiol; 2000 Jan; 83(1):181-91. PubMed ID: 10634865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissociated GABAergic retinal interneurons exhibit spontaneous increases in intracellular calcium.
    Firth SI; Feller MB
    Vis Neurosci; 2006; 23(5):807-14. PubMed ID: 17020635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contribution of NMDA and non-NMDA receptors to synaptic transmission from the brachium of the inferior colliculus to the medial subdivision of the medial geniculate nucleus in the rabbit.
    Webber TJ; Green EJ; Winters RW; Schneiderman N; McCabe PM
    Exp Brain Res; 1999 Feb; 124(3):295-303. PubMed ID: 9989435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Depression of retinogeniculate synaptic transmission by presynaptic D(2)-like dopamine receptors in rat lateral geniculate nucleus.
    Govindaiah G; Cox CL
    Eur J Neurosci; 2006 Jan; 23(2):423-34. PubMed ID: 16420449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.
    Weliky M; Katz LC
    Science; 1999 Jul; 285(5427):599-604. PubMed ID: 10417392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contrast gain control and retinogeniculate communication.
    Alitto HJ; Rathbun DL; Fisher TG; Alexander PC; Usrey WM
    Eur J Neurosci; 2019 Apr; 49(8):1061-1068. PubMed ID: 29520859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. II. Nonlagged cells.
    Hartveit E; Heggelund P
    J Neurophysiol; 1990 Jun; 63(6):1361-72. PubMed ID: 2162924
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat.
    Zhang J; Mifflin SW
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):733-45. PubMed ID: 9714856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emergence of order in visual system development.
    Shatz CJ
    J Physiol Paris; 1996; 90(3-4):141-50. PubMed ID: 9116657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster.
    Cui LN; Dyball RE
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):483-93. PubMed ID: 8961189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.
    Shoji Y; Tanaka E; Yamamoto S; Maeda H; Higashi H
    J Neurophysiol; 1998 Aug; 80(2):638-46. PubMed ID: 9705457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of blocking non-N-methyl-D-aspartate receptors on visual responses of neurons in the cat visual cortex.
    Sato H; Hata Y; Tsumoto T
    Neuroscience; 1999; 94(3):697-703. PubMed ID: 10579561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors.
    Rocha M; Sur M
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):8026-30. PubMed ID: 7644532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat.
    Sillito AM; Murphy PC; Salt TE
    Neuroscience; 1990; 34(2):273-80. PubMed ID: 1970630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A reciprocal connection between the ventral lateral geniculate nucleus and the pretectal nuclear complex and the superior colliculus: an in vitro characterization in the rat.
    Born G; Schmidt M
    Vis Neurosci; 2008; 25(1):39-51. PubMed ID: 18282309
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of glutamatergic synaptic activity in cultured spinal neurons.
    Robert A; Howe JR; Waxman SG
    J Neurophysiol; 2000 Feb; 83(2):659-70. PubMed ID: 10669482
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat.
    Bullier J; Norton TT
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):274-91. PubMed ID: 219159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse.
    Chen C; Blitz DM; Regehr WG
    Neuron; 2002 Feb; 33(5):779-88. PubMed ID: 11879654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The features of postsynaptic currents in primary culture of rat cortical neurons].
    Sibarov DA; Antonov SM
    Ross Fiziol Zh Im I M Sechenova; 2013 Jun; 99(6):763-75. PubMed ID: 24459886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.