These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8938122)

  • 1. Period protein is necessary for circadian control of egg hatching behavior in the silkmoth Antheraea pernyi.
    Sauman I; Tsai T; Roca AL; Reppert SM
    Neuron; 1996 Nov; 17(5):901-9. PubMed ID: 8938122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain control of embryonic circadian rhythms in the silkmoth Antheraea pernyi.
    Sauman I; Reppert SM
    Neuron; 1998 Apr; 20(4):741-8. PubMed ID: 9581765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation.
    Sauman I; Reppert SM
    Neuron; 1996 Nov; 17(5):889-900. PubMed ID: 8938121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster.
    Levine JD; Sauman I; Imbalzano M; Reppert SM; Jackson FR
    Neuron; 1995 Jul; 15(1):147-57. PubMed ID: 7619519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella.
    Kobelková A; Závodská R; Sauman I; Bazalová O; Dolezel D
    J Biol Rhythms; 2015 Apr; 30(2):104-16. PubMed ID: 25637625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A light-entrainment mechanism for the Drosophila circadian clock.
    Zeng H; Qian Z; Myers MP; Rosbash M
    Nature; 1996 Mar; 380(6570):129-35. PubMed ID: 8600384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clock controlling egg hatching in the cricket (Gryllus bimaculatus).
    Itoh MT; Sumi Y
    J Biol Rhythms; 2000 Jun; 15(3):241-5. PubMed ID: 10885878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity.
    Yoshii T; Heshiki Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    Eur J Neurosci; 2005 Sep; 22(5):1176-84. PubMed ID: 16176360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock.
    Myers MP; Wager-Smith K; Rothenfluh-Hilfiker A; Young MW
    Science; 1996 Mar; 271(5256):1736-40. PubMed ID: 8596937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the Clock Gene period in the Circadian Rhythm of the Silkmoth Bombyx mori.
    Ikeda K; Daimon T; Sezutsu H; Udaka H; Numata H
    J Biol Rhythms; 2019 Jun; 34(3):283-292. PubMed ID: 30947602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression patterns of the clock genes period and timeless are affected by photoperiod in the Mediterranean corn stalk borer, Sesamia nonagrioides.
    Kontogiannatos D; Gkouvitsas T; Kourti A
    Arch Insect Biochem Physiol; 2017 Jan; 94(1):. PubMed ID: 28000948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila.
    Young MW
    Annu Rev Biochem; 1998; 67():135-52. PubMed ID: 9759485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths.
    Niepoth N; Ke G; de Roode JC; Groot AT
    J Biol Rhythms; 2018 Feb; 33(1):52-64. PubMed ID: 29277154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi.
    Reppert SM; Tsai T; Roca AL; Sauman I
    Neuron; 1994 Nov; 13(5):1167-76. PubMed ID: 7946353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster.
    Yoshii T; Sakamoto M; Tomioka K
    Zoolog Sci; 2002 Aug; 19(8):841-50. PubMed ID: 12193800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A TIMELESS-independent function for PERIOD proteins in the Drosophila clock.
    Rothenfluh A; Young MW; Saez L
    Neuron; 2000 May; 26(2):505-14. PubMed ID: 10839368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila.
    Leloup JC; Goldbeter A
    Bioessays; 2000 Jan; 22(1):84-93. PubMed ID: 10649294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins.
    Leloup JC; Goldbeter A
    J Biol Rhythms; 1998 Feb; 13(1):70-87. PubMed ID: 9486845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex.
    Lee C; Bae K; Edery I
    Neuron; 1998 Oct; 21(4):857-67. PubMed ID: 9808471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation.
    Sehgal A; Rothenfluh-Hilfiker A; Hunter-Ensor M; Chen Y; Myers MP; Young MW
    Science; 1995 Nov; 270(5237):808-10. PubMed ID: 7481772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.