BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8938242)

  • 1. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy.
    Mader K; Gallez B; Liu KJ; Swartz HM
    Biomaterials; 1996 Feb; 17(4):457-61. PubMed ID: 8938242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.
    Bittner B; Mäder K; Kroll C; Borchert HH; Kissel T
    J Control Release; 1999 May; 59(1):23-32. PubMed ID: 10210719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres.
    Montanari L; Costantini M; Signoretti EC; Valvo L; Santucci M; Bartolomei M; Fattibene P; Onori S; Faucitano A; Conti B; Genta I
    J Control Release; 1998 Dec; 56(1-3):219-29. PubMed ID: 9801445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer.
    Isobe M; Yamazaki Y; Oida S; Ishihara K; Nakabayashi N; Amagasa T
    J Biomed Mater Res; 1996 Nov; 32(3):433-8. PubMed ID: 8897149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release of NFkappaB decoy oligonucleotides from biodegradable polymer microparticles.
    Zhu X; Lu L; Currier BL; Windebank AJ; Yaszemski MJ
    Biomaterials; 2002 Jul; 23(13):2683-92. PubMed ID: 12059017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation in rabbits of a controlled release 5-fluorouracil subconjunctival implant based on poly(D,L-lactide-co-glycolide).
    Wang G; Tucker IG; Roberts MS; Hirst LW
    Pharm Res; 1996 Jul; 13(7):1059-64. PubMed ID: 8842045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres.
    Uchida T; Yagi A; Oda Y; Nakada Y; Goto S
    Chem Pharm Bull (Tokyo); 1996 Jan; 44(1):235-6. PubMed ID: 8582042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH and osmotic pressure inside biodegradable microspheres during erosion.
    Brunner A; Mäder K; Göpferich A
    Pharm Res; 1999 Jun; 16(6):847-53. PubMed ID: 10397604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive in vivo monitoring of drug release and polymer erosion from biodegradable polymers by EPR spectroscopy and NMR imaging.
    Mäder K; Bacic G; Domb A; Elmalak O; Langer R; Swartz HM
    J Pharm Sci; 1997 Jan; 86(1):126-34. PubMed ID: 9002472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers.
    Martin C; Winet H; Bao JY
    Biomaterials; 1996 Dec; 17(24):2373-80. PubMed ID: 8982478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections.
    Benoit MA; Mousset B; Delloye C; Bouillet R; Gillard J
    Int Orthop; 1997; 21(6):403-8. PubMed ID: 9498152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis.
    Zhang Y; Zale S; Sawyer L; Bernstein H
    J Biomed Mater Res; 1997 Mar; 34(4):531-8. PubMed ID: 9054536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-sterilization-induced radicals in biodegradable drug delivery systems.
    Mäder K; Domb A; Swartz HM
    Appl Radiat Isot; 1996; 47(11-12):1669-74. PubMed ID: 9022208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo degradation characteristics of poly(glycerol sebacate).
    Wang Y; Kim YM; Langer R
    J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process.
    Kempe S; Metz H; Mäder K
    J Control Release; 2008 Sep; 130(3):220-5. PubMed ID: 18611421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior.
    Mi FL; Lin YM; Wu YB; Shyu SS; Tsai YH
    Biomaterials; 2002 Aug; 23(15):3257-67. PubMed ID: 12102197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres.
    Sinha VR; Trehan A
    Drug Deliv; 2005; 12(3):133-9. PubMed ID: 16025842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the initial stages of drug release from a degradable matrix of poly(d,l-lactide-co-glycolide).
    Frank A; Kumar Rath S; Boey F; Venkatraman S
    Biomaterials; 2004 Feb; 25(5):813-21. PubMed ID: 14609670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.